

0

1

1.1

1.2

1.3

1.4

1.5

1.6

2

2.1

2.2

2.3

2.4

3

3.1

3.2

3.3

3.4

4

4.1

4.2

4.3

5

5.1

5.2

5.3

5.4

6

6.1

6.2

Table	of	Contents
Introduction

The	roboRIO

General	roboRIO	Overview

Configuring	the	roboRIO

Connecting	to	the	roboRIO	Wirelessly

Uploading	Code	to	the	roboRIO

The	CAN	Bus

The	Robot	Signal	Light

The	Power	Distribution	Board	(PDP)

The	PDP

120A	Circuit	Breaker

The	Voltage	Regulator	Module

The	Power	Converter

The	D-Link

The	Physical	Layer

Automatic	Configuration

Manual	Configuration

Troubleshooting	the	D-Link

Driver	Station

Introduction

The	Interface

Printing	to	Driver	Station

A	Crash	Course	on	C++

Variables

Functions

Object	Usage

The	Joystick

Motor	Controllers

General	Overview

Motors

FRC	Electrical	Bible

2

6.3

6.4

6.5

6.6

6.7

6.8

7

7.1

7.2

7.3

7.4

8

8.1

8.2

8.3

8.4

9

9.1

9.2

10

10.1

10.2

10.3

11

11.1

11.2

11.3

12

12.1

13

Jaguar

Victor	888

Talon

Talon	SRX

Spike

Fans

Drive	Code

Box	on	Wheels

Box	on	Wheels	Template	vs	Custom	Program

Custom	Program	(Tank	Drive)

Custom	Program	(Mecanum	Drive)

Sensors

roboRIO	Accelerometer

Microswitch

Optical	Encoder

Gyro

Camera

Hardware

Setting	up	the	Camera

LiveFeed

The	Code

Using	NI	Vision	Assistant

Developing	Camera	Code

Pneumatics

The	Physical	Layer

Pneumatics	Circuit

Pneumatics	Code

Appendixes

Appendix	A:	General	Wiring	Diagram

Changelog

FRC	Electrical	Bible

3

The	Electrical	Bible	-	Beta

Welcome	to	our	Electrical	FIRSTopedia!

We	created	this	guide	in	hopes	of	combining	a	basic	understanding	of	all	the	electronic
components	the	FRC	robot	uses	into	one	cohesive	and	comprehensive	guide.	This	guide
was	made	with	the	power	of	Google	Docs,	GitBook,	our	phones’	cameras	and	endless
Google	searches.

This	guide	has	been	updated	to	include	the	2015	control	system.	Our	older	document	can
be	found	here,	and	includes	documentation	on	the	cRIO.

Something	to	note	is	that	we	program	in	C++,	so	references	to	classes	like	“Encoder”	and
our	sample	codes	are	written	in	C++.	However,	classes	are	interchangeable	in	Java	and
C++,	and	there	are	topics	covered	in	this	guide	that	are	not	language-exclusive	like	the
roboRIO	and	the	Driver	Station	itself.	We	hope	this	is	guide	serves	to	be	useful	for	you!

Team	2853	Electrical/Programming	Team

If	you	are	viewing	this	on	GitHub,	please	use	the	GitBook	link:
https://mililanirobotics.gitbooks.io/frc-electrical-bible/content/index.html

FRC	Electrical	Bible

4Introduction

https://docs.google.com/document/d/1VjkKHTcF8Ad7jFQ6UhMruWDiEiJPYaobDACFQO4vjQI/
https://mililanirobotics.gitbooks.io/frc-electrical-bible/content/index.html

1.	The	roboRIO

1.1	General	roboRIO	Overview

➠	What	is	a	roboRIO?

➠	Connectors

➠	Wiring	Diagram

1.2	Configuring	the	roboRIO

➠	Installing/Updating	New	Firmware

➠	Imaging/	Reimaging	a	roboRIO

1.3	Connecting	to	the	roboRIO	Wirelessly

1.4	Uploading	Code	to	the	roboRIO

1.5	The	CAN	Bus

➠	Introduction

➠	Wiring	the	CAN

FRC	Electrical	Bible

5The	roboRIO

General	roboRIO	Overview

➠	What	is	a	roboRIO?

A	roboRIO	is	a	more	recent	version	of	the	cRIO	(compact	Reconfigurable	Input/Output)	that
was	introduced	to	FRC	teams	in	the	2015	season.	It	is	a	faster,	smaller,	and	more	powerful
version	of	the	previous	controller.	Like	the	cRIO,	it	acts	as	the	brain	of	the	robot,	and
connects	to	a	D-Link	router	using	an	ethernet	cable.	Additionally,	the	roboRIO	combines	the
functions	of	the	digital	sidecar	including	the	digital	and	analog	modules	of	the	previous
control	system.	The	roboRIO	is	more	robust	than	the	digital	sidecar,	and	is	protected	from
shorts	between	its	external	pins.

Specs

Basic	Overview

Dual-Core	ARM	Cortex	667	MHz	processor
256	MB	RAM
512	MB	NAND	storage	memory
Linux	Operating	System	with	real-time	extensions	Supports	LABVIEW,	C++,	and	Java

Physical/Electrical	Characteristics

6.8	V	to	16	V	input	power	(staged	brownout	from	4.5	V	to	6.8	V)
3.3	V	user	output	(with	1.5	A	maximum)
5	V	user	output	(with	1	A	maximum)
6	V	servo	output	(with	2.2	A	maximum)
Operating	temperature	0°C	-	40°C
Storage	temperature	-20°C	-	70°C
5.7	inches	by	5.6	inches,	weighs	12	ounces
I/O	and	Communication	Ports

10	dedicated	PWM	channels

FRC	Electrical	Bible

6General	roboRIO	Overview

10	DIO	dedicated	channels
4	bi-directional
Relay	Control	channels
2	USB	Host	ports
1	USB	Device	port
1	Ethernet	port
1	CAN	Port
1	Integrated,	3-axis	accelerometer
12	V	Robot	signal	light	channel

➠	Connectors

Weidmuller	Connectors	are	used	to	supply	power	to	the	roboRIO,	PCM	(Pneumatic	Control
Module),	and	VRM	(Voltage	Regulator	Module).	The	connector	accepts	wire	gauges	from	16
AWG	to	24	AWG.	Wires	can	be	inserted	into	or	removed	from	the	Wiedmuller	connector	by
pushing	down	on	the	white	tab	using	a	tiny	flathead.

➠	Wiring	Diagram

FRC	Electrical	Bible

7General	roboRIO	Overview

Notes:

The	CAN	Ports	on	the	roboRIO	are	used	to	connect	to	the	PCM	and	PDP
The	roboRIO	is	connected	to	the	PDP	through	its	input	power	ports.	Do	not	connect	the
roboRIO	directly	to	the	robot	battery.
The	USB	Device	port	can	be	used	to	connect	to	a	computer	to	update	the	roboRIO
firmware	and	to	reimage	the	roboRIO.
The	LEDs	indicate	the	current	status	of	the	roboRIO.	The	roboRIO	can	be	mounted
using	zip-ties	through	the	mounting	features.
Please	see	the	Appendix	for	an	example	wiring	of	the	whole	control	system.

FRC	Electrical	Bible

8General	roboRIO	Overview

Configuring	the	roboRIO
Before	a	brand	new	roboRIO	can	be	put	into	action,	you	must	first	install	the	latest	roboRIO
firmware	and	then	re-image	the	software	using	the	latest	version.	Before	you	begin,	ensure
that	the	NI	(National	Instruments)	suite	is	updated.	The	NI	update	as	well	as	instructions	for
downloading	it	can	be	found	below:
https://wpilib.screenstepslive.com/s/4485/m/13503/l/144150-installing-the-frc-2015-update-
suite-all-languages

➠	Installing	and	Updating	the	roboRIO	firmware

Prior	to	the	imaging	of	the	roboRIO,	the	firmware	on	the	roboRIO	must	be	upgraded	to	the
latest	version.	This	process	will	provide	the	bootloader,	safemode,	and	firmware	for	the
roboRIO.	While	it	is	possible	to	do	this	using	an	ethernet	connection,	it	is	not	recommended.
The	firmware	can	be	updated	using	your	system’s	web	browser	in	the	following	steps:

FRC	Electrical	Bible

9Configuring	the	roboRIO

https://wpilib.screenstepslive.com/s/4485/m/13503/l/144150-installing-the-frc-2015-update-suite-all-languages

1.	 As	shown	in	the	electrical	layout	below,	connect	the	roboRIO	to	your	computer	using	a
printer	USB	cable	and	supply	power	to	the	roboRIO.	

2.	 The	driver	should	install	automatically.	Once	the	download	is	complete,	open	a	web
browser	on	your	computer.

3.	 In	the	address	bar	of	the	web	browser,	type	“172.22.11.2”	and	press	enter.

4.	 Click	login.	“admin”	will	be	the	username	and	leave	the	password	field	blank.	Then,	click
“Update	Firmware”

5.	 Look	for	the	roboRIO	(.cfg	file	in	your	National	Instruments	folder.	The	default	location	of
this	file	is	under	“Program	Files\National	Instruments\Shared\Firmware\cRIO\76F2”	

FRC	Electrical	Bible

10Configuring	the	roboRIO

6.	 Click	“Begin	Update”

➠	Imaging	and	Reimaging	the	roboRIO

The	roboRIO	Image	loads	the	FPGA,	operating	system,	linux	file	system,	and	default
settings	for	the	roboRIO.	Now	that	the	roboRIO	has	the	latest	firmware	installed,	it	is	now
possible	to	image	the	roboRIO	in	the	follow	steps:

1.	 Ensure	that	the	roboRIO	is	still	powered	from	the	PDP	(Power	Distribution	Panel)	and	is
still	securely	plugged	into	the	computer	using	a	printer	USB	cable.

2.	 Look	for	the	roboRIO	Imaging	tool	(.exe	file)	as	shown	below.	It	is	located	within	the
National	Instruments	file	folder,	and	its	default	location	is	“National
Instruments\LabVIEW	2014\project\roboRIO”	

3.	 Double	click	to	run	the	“roboRIO_ImagingTool.exe”	application,	and	the	the	interface	will
attempt	to	identify	connected	roboRIO	devices.

4.	 Enter	your	team	number	under	“System	Information.”	Select	the	latest	version	of	the
roboRIO	Image	(indicated	by	the	highest	version	number)	and	the	name	of	the	roboRIO
you	intend	to	image.

5.	 Select	the	Format	Target	option	but	make	sure	that	the	Console	Out	and	Disable	RT
Startup	App	options	are	not	selected.	Click	“Reformat”	

6.	 Once	the	Imaging	is	complete,	click	“OK”	on	the	completion	message	and	Reboot	the

FRC	Electrical	Bible

11Configuring	the	roboRIO

roboRIO	using	the	Reset	button.

FRC	Electrical	Bible

12Configuring	the	roboRIO

Connecting	to	the	roboRIO	Wirelessly
1.	 Change	the	IP	address	and	subnet	mask	of	your	computer.	The	IP	address	should	be

“10.xx.yy.100”,	with	xx	and	yy	being	your	four	digit	team	number,	and	the	subnet	mask
should	“255.0.0.0”	

2.	 Connect	to	the	team’s	wireless	router.	It’s	that	easy!	

FRC	Electrical	Bible

13Connecting	to	the	roboRIO	Wirelessly

FRC	Electrical	Bible

14Connecting	to	the	roboRIO	Wirelessly

Uploading	Code	to	the	roboRIO
With	the	introduction	of	the	roboRIO	to	FRC	teams	in	2015,	uploading	code	to	the	robot	is
made	easy!	Here’s	the	steps:

1.	 Establish	a	network	connection	to	your	robot	network.	On	your	computer,	go	to
your	network	connections	and	connect	to	the	router	that	is	connected	to	the	roboRIO.
Don’t	worry	if	you’re	already	connected	to	another	network,	as	you	will	automatically
disconnect	from	that	network	connection.	

Connecting	to	a	network

2.	 Build	your	Project.	Click	the	“Project”	option	and	then	click	“Build	Project.”	To	upload
code	to	the	roboRIO,	it	is	only	necessary	to	build	the	project	for	uploading	code	that
hasn’t	been	build	in	the	past	or	was	modified,	but	it’s	a	good	habit	to	always	build	your
projects	before	uploading	them	to	the	robot.	Therefore,	we	recommended	having	your

FRC	Electrical	Bible

15Uploading	Code	to	the	roboRIO

projects	before	uploading	them	to	the	robot.	Therefore,	we	recommended	having	your
“Build	Automatically”	setting	enabled.	

Building	an	Eclipse	project

3.	 Run	your	code.	Press	Ctrl	+	F11,	and	when	prompted	how	you	would	like	to	run	your
code,	select	the	“WPILib	C++	Deploy”	option	and	press	OK.	Now	you’re	done!	Wait	for
the	Driver	Station	to	show	that	communications	has	been	established,	and	you’ll	be	on
your	way	to	testing	your	code!	

Running	your	code	using	“WPILib	C++	Deploy”

FRC	Electrical	Bible

16Uploading	Code	to	the	roboRIO

FRC	Electrical	Bible

17Uploading	Code	to	the	roboRIO

The	CAN	Bus

➠	Introduction
As	of	the	2015	FRC	game,	Recycle	Rush,	teams	are	required	to	use	the	CAN	bus	on	the
roboRIO	when	connecting	to	the	PCM,	PDP,	Talon	SRXs,	and	Jaguars	(R	60-62).

This	section	will	not	go	over	how	to	use	CAN	on	the	Talon	SRX	(you	can	read	CTR’s	Talon
SRX	User	guide)	or	the	Jaguar,	because	our	team	does	not	have	experience	with	these
items.

By	connecting	the	control	system	together	with	CAN,	the	PDP	and	PCM	can	communicate
with	each	other.	The	PDP	provides	monitoring	for	each	of	its	outputs.	A	main	advantage	of
this	system	is	that	compressors	and	pressure	switches	no	longer	need	to	be	connected	to	a
Relay	Spike.

➠	Wiring	the	CAN

When	wiring,	we	recommend	twisting	the	two	wires	together.	There	are	no	specific	buses	for
input/output	but	by	convention,	we	use	the	left	bus	as	input	and	right	bus	as	output.

If	you	are	not	using	the	roboRIO	or	PDP	as	terminals	for	the	CAN	chain,	terminate	the	CAN
chain	by	inserting	a	120	Ω	resistor	into	the	Weidmuller	terminals.

FRC	Electrical	Bible

18The	CAN	Bus

The	Robot	Signal	Light

➠	Introduction
The	Robot	Signal	Light	(RSL)	is	mandatory	during	competition	and	acts	as	a	signal	to
whether	the	robot	is	connected	to	the	FCS,	in	teleop	mode,	etc.

➠	Wiring	the	RSL

A	separate	wire	acts	as	a	jumper	between	La	and	Lb.	Connect	La	to	'S'	and	N	to	Ground	on
the	roboRIO.

➠	RSL	Indicators

FRC	Electrical	Bible

19The	Robot	Signal	Light

Light	Code Meaning

Solid	ON Autonomous	enabled

Solid	ON	but
blinks	off	every
1.5	sec

Teleop	enabled

Slow	blink
(900ms	ON	/
900ms	OFF)

System	disabled	by	system	watchdog,	user	watchdog,	or	driver
station	set	to	disabled

Fast-slow
(200ms	ON	/
900ms	OFF)

Low	battery	(<12V)	or	no	user	code	AND	system	disabled	either
by	system	watchdog,	user	watchdog,	or	Driver	Station	set	to
disabled.

Fast	(200ms	ON
/	200ms	OFF)

System	error;	no	Driver	station	communication;	bad	cRIO	image,
bad	team	ID,	extensive	communication	errors

FRC	Electrical	Bible

20The	Robot	Signal	Light

2.	The	PDP

2.1	The	PDP

➠	Wiring

2.2	120A	Circuit	Breaker

2.3	The	Voltage	Regulator	Module

➠	Wiring

2.4	The	Power	Converter

FRC	Electrical	Bible

21The	Power	Distribution	Board	(PDP)

The	PDP

The	PDP	is	a	newer	iteration	of	the	PDB	that	was	in	the	Kit	of	Parts	given	to	teams	in	the
2015	FRC	season.	The	main	difference	between	the	two	is	that	the	PDP	is	slightly	smaller,
lighter,	and	has	updated	connectors,	which	includes	the	Weidmuller	Connectors	used	on	the
CAN	bus.	In	general,	the	PDP	serves	the	same	function	as	the	PDB,	distributing	power	to
the	system,	but	is	improved	to	better	reflect	the	updates	made	to	the	rest	of	the	control
system.

Specs	

Dimensions:	7.586”	x	4.748”	x	1.442”	tall	(rough)	
Weight:	1	lb	and	5.3	oz	
4	Mounting	holes	(one	at	each	corner,	smaller	than	1/4-20	and	larger	than	10-32
fasteners)	
Connectors	

Main	Battery	Input
2	Bushing	lugs
Thread	M6x1	(size	6	mm)

Power	Channels	(0-15)

FRC	Electrical	Bible

22The	PDP

8	Red	/	8	Black	WAGO	Connectors	30	Amp	Channels	(4-11)
8	Red	/	8	Black	WAGO	Connectors	40	Amp	Channels	(0-3,	12-15)
6	Position	Weidmuller	Connectors	(accept	24-16	AWG)

1	x	20	amp	fuse	(used	for	PCM	and	VRM)
1	x	10	amp	fuse	(used	for	RoboRIO)

8	x	20	/	30	amp	Thermal	Breaker	by	Snap	Action	slots	(channels	4-11)
8	x	40	amp	Thermal	Breaker	by	Snap	Action	slots	(channels	0-3,	12-15)
CAN

4	Position	Weidmuller	Connectors
2	Yellow	CAN	High
2	Green	CAN	Low

Status	Lights	
Both	Lights	are	always	the	same	color	/	blinking	pattern	with	the	exception	of
booting	up
Fast	Green	Blink	-	Robot	is	enabled
Slow	Green	Blink	-	Robot	is	disabled
Slow	Orange	Blink	-	Robot	is	disabled	&	Sticky	Fault	present	(low	voltage,	<	6.5	V
Slow	Red	Blink	-	No	CAN	communication
Boot	Status	lights	(COMM	LED	only)

Green	/	Orange	Blink	-	Device	is	in	boot-loader	/	Field-upgrade	necessary
Both	LEDs	off	-	Device	is	NOT	powered

FRC	Electrical	Bible

23The	PDP

120A	Circuit	Breaker
Currently	needs	to	be	documented.

FRC	Electrical	Bible

24120A	Circuit	Breaker

The	Voltage	Regulator	Module

➠	General	VRM	Overview

Image	courtesy	of	http://khengineering.github.io/

➠	What	is	a	VRM?

The	Voltage	Regulator	Module	(VRM)	is	a	new	component	introduced	in	the	2015	FRC
season	as	part	of	the	Kit	of	Parts.	This	replaces	the	12V	and	5V	regulator	and	special
protected	and	unprotected	power	outputs	on	the	old	PDB.	The	purpose	of	the	VRM	is	to	act
as	a	DC	to	DC	converter,	and	both	boost	and	buck	voltage	regulation.	The	VRM	is	required
when	using	components	that	require	special	protected	power.

Specs

Dimensions:	2.220”	x	2.030”	x	0.784”	Tall

Weight:	1.8	oz

4	mounting	holes	(one	at	each	corner,	6-32	fasteners)

Connectors	(all	use	Weidmuller	connectors,	accepting	24	-	16	AWG)

FRC	Electrical	Bible

25The	Voltage	Regulator	Module

http://khengineering.github.io/

4	x	connectors	for	regulated	12V	/	2A	max	surge	/	1.5A	limit	power	output

4	x	connectors	for	regulated	12V	/	500mA	max	surge	power	output

4	x	connectors	for	regulated	5V	/	2A	max	surge	/	1.5A	limit	power	output

4	x	connectors	for	regulated	5V	/	500mA	max	surge	power	output

2	x	connectors	for	unregulated	12V	input

Status	Lights

5V/500mA	Status	LED
On	-	5V	channels	are	powered
Off	-	Breaker	has	tripped

12V/500mA	Status	LED
On	-	12V	channels	are	powered
Off	-	Breaker	has	tripped

LEDs	not	affected	when	2A	channels	are	limited

Flickering	-	Low	voltage	(<4V)

➠	Wiring

All	ports	use	Weidmuller	connectors,	accepting	24	-	16	AWG

Note:	There	are	two	separate	power	supplies,	12V	and	5V.	There	is	just	enough	power	to
run	both	a	D-Link	and	Camera	on	the	5V	rail,	but	you	may	need	to	use	a	separate	12V	to	5V
adapter.

FRC	Electrical	Bible

26The	Voltage	Regulator	Module

The	Power	Converter

Although	we	have	the	voltage	regulator	module,	if	you	are	looking	to	power	>	1	camera,	you
will	need	a	power	converter	so	the	camera	can	operate	under	it's	necessary	voltage.	The
power	converter	plugs	into	the	PDP	with	a	20A	circuit	breaker.

FRC	Electrical	Bible

27The	Power	Converter

Wiring	the	Power	Converter	

FRC	Electrical	Bible

28The	Power	Converter

FRC	Electrical	Bible

29The	Power	Converter

3.	The	D-Link

3.1	The	Physical	Layer

➠	Introduction

➠	The	Voltage	Regulator	Module

3.2	Automatic	Configuration

➠	2015	Configuration	Prerequisites

➠	FRC	Configuration	Bridge	Utility

3.3	Manual	Configuration

➠	Setup:	LAN	Settings

➠	Set	a	Device	Name

➠	Set	the	LAN	Connection	Type

➠	Configure	the	IPv4	Address,	Subnet	Mask,	and	Default	Gateway

➠	Wireless	Settings

3.4	Troubleshooting	the	D-Link

FRC	Electrical	Bible

30The	D-Link

The	Physical	Layer

➠	Introduction

	
We	control	the	robot	through	a	Logitech	gamepad	controller.	Generally,	we	wouldn’t	want	to
follow	the	robot	around	with	an	ethernet	cable,	so	we	solve	this	problem	by	connecting
wirelessly.	We	use	the	D-Link	as	a	medium	to	communicate	with	the	robot	in	this	fashion.

➠	The	Voltage	Regulator	Module
As	of	the	2015	FRC	game,	Recycle	Rush,	the	DLink	is	required	to	be	powered	by	the	5V/2A
AKA	“Radio”	port	on	the	Voltage	Regulator	Module.	You	can	read	more	about	it	the	The
Power	Distribution	Panel	section.

FRC	Electrical	Bible

31The	Physical	Layer

	
The	D-Link	itself	is	connected	to	a	power	adapter	that	is:	

5V	Output
Power	Cable	to	D-Link	Model	No:	AMS3-0502000	FU

Barrel	5.5/2.1mm	

AndyMark	-	Power	Converter	|

The	D-Link	connects	to	the	cRIO	via	a	Standard	CAT-5	Ethernet	Cable.	It	can	also	act	as	the
“middle-man”	with	an	Ethernet	cable	connecting	to	the	Driver	Station	laptop.	

FRC	Electrical	Bible

32The	Physical	Layer

http://www.andymark.com/product-p/am-0899.htm

Make	sure	the	router	has	power
Make	sure	the	ethernet	cables	are	plugged	in	securely	(on	both	ends)

NOTE:	It	doesn’t	matter	which	LAN	Ports	the	ethernet	cables	are	plugged	into.	However,	by
convention	we	usually	make	sure	that	the	roboRIO	connects	to	port	2	and	a	computer	plugs
into	port	1.

FRC	Electrical	Bible

33The	Physical	Layer

Automatic	Configuration

➠	2015	Configuration	Prerequisites
1.	 Make	sure	that	the	router	is	switched	to	the	Access	Point	mode	you	request	(2.4	Ghz,

5.0	Ghz,	Bridge).	A	setting	of	2.4	Ghz	is	appropriate	for	most	FRC	teams	and	should	be
used	as	the	default.

2.	 Ensure	that	your	computer	has	Java	installed.	If	you’re	unsure	or	need	to	check	or
download	the	Java	software,	use	this	link:	http://www.java.com/en/download/index.jsp

3.	 Also	ensure	that	the	NI	Suite	is	updated,	which	includes	the	FRC	Bridge	Configuration
Utility	to	configure	a	router	to	use	in	FRC.	To	download	the	New	FRC	Software,	use	this
link:	http://wpilib.screenstepslive.com/s/4485/m/13503/l/144150-installing-the-frc-2015-
update-suite-all-languages	NOTE:	To	reset	the	router	press	and	hold	the	reset	button
for	30	seconds	to	perform	a	factory	reset	to	wipe	any	previous	configurations

➠	FRC	Bridge	Configuration	Utility
NOTE:	If	the	router	is	not	brand	new,	it	is	not	necessary	to	press	and	hold	the	reset	button
for	30	seconds	to	perform	a	factory	reset	to	wipe	any	previous	configurations	because	the
FRC	software	will	do	so	for	you.

1.	 Turn	off	the	Wifi	on	your	computer
2.	 Make	sure	the	physical	layer	on	the	router	is	setup	properly.
3.	 Launch	the	FRC	Bridge	Tool	software.	It	is	located	under	the	National	Instruments

folder,	and	its	default	location	is	C:\Program	Files\National	Instruments\LabVIEW
2014\project\FRC	Bridge	Configuration	Utility.exe	

FRC	Electrical	Bible

34Automatic	Configuration

http://www.java.com/en/download/index.jsp
http://wpilib.screenstepslive.com/s/4485/m/13503/l/144150-installing-the-frc-2015-update-suite-all-languages

4.	 Under	the	Network	Interfaces	popup	from	the	Bridge	Configuration	Utility,	Select	“Local
Area	Connection”	and	press	OK.	If	there	are	no	network	interfaces	shown,	click	the
refresh	button.	

FRC	Electrical	Bible

35Automatic	Configuration

5.	 Under	the	FRC	Bridge	Configuration	Utility,	Type	in	your	FRC	team	number	as	well	as	a
password	to	be	set	under	the	section	for	“WPA	Key.”	Ensure	that	the	Radio	option	is	set
to	DAP1522	RevB,	and	that	the	Mode	option	is	set	to	the	current	prerequisite	setting
(default	of	2.4GHz	Access	Point	should	be	used).	Now	click	“Configure.”	

6.	 Wait	until	the	Configuration	Progress	is	complete,	and	then	press	OK	once	it	is	done!
Note	that	the	router	SSID	can	be	configured	through	the	D-Link	ap	

FRC	Electrical	Bible

36Automatic	Configuration

Manual	Configuration

1.	 Open	up	your	web	browser	(Firefox,	Chrome,	etc.)
2.	 In	the	address	bar,	type	in	the	IP	address	of	the	router.	It’s	either:	

192.168.1.1,	the	default	IP	address	
8OR	10.xx.yy.1,	where	xx	is	the	first	two	digits	of	your	team’s	#	(it	can	be	one	digit	if
your	team	has	a	three-digit	#)	and	yy	is	the	last	two	
OR	type	in	dlinkap/	and	hit	enter.

3.	 You’ll	get	a	prompt	for	the	router	name	and	password	like	the	one	shown	below.	On	a
brand	new	router	or	a	router	that	was	reseted,	the	login	info	will	be	this:	
User	Name:	Admin	
No	Password	(by	default)	

FRC	Electrical	Bible

37Automatic	Configuration

➠	Setup:	LAN	Settings

FRC	Electrical	Bible

38Automatic	Configuration

➠	Set	a	Device	Name:	Teamxxxx-y	
xxxx	=	Your	team	number	to	avoid	confusion.	
y	=	Arbitrary	but	unique	number	to	your	router	to	avoid	confusion.	You	should	base	it	on	the
number	of	routers	your	team	owns.	Example	Device	Name:	Team2853-1	
➠	Set	the	LAN	Connection	type:	“Static	IP"	
➠	Configure	the	IPv4	Address,	Subnet	Mask,	and	Default	Gateway	
IP	Address:	10.xx.yy.1	
xx.yy	=	Your	Team	Number	
xx	can	both	be	the	one	digit	if	your	team	has	a	three-digit	number	
Example	IP	Address:	10.28.53.1	
Subnet	Mask:	255.0.0.0	
Default	Gateway:	10.28.53.4

FRC	Electrical	Bible

39Automatic	Configuration

➠	Wireless	Settings

Enable	Wireless:	
Checkmark	the	Box	
Set	to	Always	

Wireless	Network	Name:	
Name	it	to	(whatever	you	want)	

FRC	Electrical	Bible

40Automatic	Configuration

Wireless	Security	Mode:	
Security	to	WPA	Personal	
WPA	mode	to	WPA2	Only	
Cipher	Type	to	AES	
Pre-shared	key	is	the	Network	Security	Key

FRC	Electrical	Bible

41Automatic	Configuration

Manual	Configuration
1.	 Open	up	your	web	browser	(Firefox,	Chrome,	etc.)
2.	 In	the	address	bar,	type	in	the	IP	address	of	the	router.	It’s	either:

192.168.1.1,	the	default	IP	address	OR
10.xx.yy.1,	where	xx	is	the	first	two	digits	of	your	team’s	#	(it	can	be	one	digit	if
your	team	has	a	three-digit	#)	and	yy	is	the	last	two	OR
type	in	dlinkap/	and	hit	enter.

3.	 You’ll	get	a	prompt	for	the	router	name	and	password	like	the	one	shown	below.	On	a
brand	new	router	or	a	router	that	was	reseted,	the	login	info	will	be	this:

User	Name:	Admin

No	Password	(by	default)

➠	Setup:	LAN	Settings

FRC	Electrical	Bible

42Manual	Configuration

➠	Set	a	Device	Name:	Teamxxxx-y

xxxx	=	Your	team	number	to	avoid	confusion.

y	=	Arbitrary	but	unique	number	to	your	router	to	avoid	confusion.	You	should	base	it	on
the	number	of	routers	your	team	owns.

Example	Device	Name:	Team2853-1

➠	Set	the	LAN	Connection	type:	“Static	IP”

➠	Configure	the	IPv4	Address,	Subnet	Mask,	and	Default	Gateway:

IP	Address:	10.xx.yy.1	xx.yy	=	Your	Team	Number

FRC	Electrical	Bible

43Manual	Configuration

xx	can	both	be	the	first	digit	if	your	team	has	a	three-digit	number
Example	IP	Address:	10.28.53.1
Subnet	Mask:	255.0.0.0
Default	Gateway:	10.28.53.4

➠	Wireless	Settings

(red)	Enable	Wireless:

Checkmark	the	Box
Set	to	Always

FRC	Electrical	Bible

44Manual	Configuration

(green)	Wireless	Network	Name:

Name	it	to	(whatever	you	want)	-	you	may	want	to	implement	a	naming	system	so	you
don't	get	multiple	routers	confused.

(blue)	Wireless	Security	Mode:

Security	to	WPA	Personal
WPA	mode	to	WPA2	Only
Cipher	Type	to	AES
Pre-shared	key	is	the	Network	Security	Key

FRC	Electrical	Bible

45Manual	Configuration

Troubleshooting	the	D-Link
Ensure	that	all	necessary	cables	(Power	and/or	Ethernet	cables)	are	plugged	in
securely.	
Ensure	that	the	switch	on	the	back	of	the	router	is	set	to	“AP	2.4	GHz”	unless	you	have
specifically	set	the	router	and	its	configuration	to	a	different	mode.	
Ensure	your	router	is	not	labeled	BROKEN	with	electrical	tape.(Team	specific)	
Try	resetting	the	power	on	the	router.	Remove	its	power	source,	wait	10	seconds,	then
plug	the	power	cable	back	in.	Sometimes	wizards	come	and	magically	fix	the	router
when	you	do	this.	
Try	powering	through	an	outlet	using	the	power	adapter	that	came	with	your	router.	
Try	resetting	the	router’s	data.	Get	a	toothpick	or	some	other	thin	object,	then	use	it	to
hold	the	reset	button	down	for	10	seconds.	Wait	about	30	seconds	for	it	to	reboot.	Then,
refer	to	the	initial	configuration	process	above.	
Routers	do	break	down	and	its	possible	that	it’s	simply	busted.	However,	these	things
are	expensive	so	make	sure	it’s	broken	before	declaring	that	you	need	to	get	a	new
one.

Additional	Resources	

Getting	Started	with	the	2015	Control	System

WPILib	-	Getting	Started	with	the	2014	FRC	Control	System

Getting	Started	with	the	2013	FRC	Control	System

D-Link	DAP-1522	User	Manual

AndyMark	Product	Page

FRC	Electrical	Bible

46Troubleshooting	the	D-Link

http://www.google.com/url?q=http%3A%2F%2Fwpilib.screenstepslive.com%2Fs%2F3120%2Fm%2F8559%2Fl%2F91405-programming-your-radio-for-home-use&sa=D&sntz=1&usg=AFQjCNFLhBihSjsyFtyx-v0KWLbu8OZgOw
http://wpilib.screenstepslive.com/s/3120/m/8559
http://www.mililanirobotics.org/Documentation/electrical/2013FRCControlSystem.pdf
http://www.mililanirobotics.org/Documentation/electrical/DAP-1522%20User%20Manual.pdf
http://www.andymark.com/DAP-1522-REV-B-p/am-0839.htm

4.	Driver	Station

4.1	Introduction

4.2	The	Interface

➠	Main	Display

➠	Operation	Tab

➠	Diagnostics	Tab

➠	Setup	Tab

➠	Power	&	Can

➠	Messages	&	Charts

4.3	Printing	to	the	Driver	Station

FRC	Electrical	Bible

47Driver	Station

Introduction
This	is	your	interface--neat,	organized	simplicity.	It	isn’t	necessary	to	know	how	to	write	code
in	order	to	use	the	Driver	Station,	you	simply	need	to	know	the	following:

1.	 How	to	deploy	code	(connecting	to	the	robot	is	a	given)

2.	 What	deployed	code	does

This	is	the	program	that	allows	to	to	test	and	use	your	code	on	FRC	components.	The	Driver
Station	is	the	middle-man	between	you	and	the	robot!,	this	is	your	middle	man	between	your
code	and	the	robot!

Driver	Station	definitely	got	an	update:	revised	appearance,	more	features,	what’s	not	to
love?	Together	we	can	relearn	this	adjusted	Driver	Station,	it	shouldn’t	be	all	that	different
compared	to	its	last	iteration,	depending	on	how	you	look	at	it.

FRC	Electrical	Bible

48Introduction

The	Interface

➠	Main	Display
This	display	is	independent	from	the	sections	left	and	right	of	this	display,	it	will	always	be	in
view(while	Driver	Station	is	open	of	course)	even	if	you	switch	tabs	on	the	Driver
Station(See	Tab	Selection,	also	Charts	&	Messages)

1.	 Your	Team	#,	this	can	be	configured	personally	in	the	Setup	Tab	(See	Tab	Selection
Section	:	➠Setup	Tab)

2.	 Current	voltage	of	the	battery	in	V	(volts)	has	a	visual	indicator	to	the	left	in	the	form	of	a
pictorial	representation	of	a	battery	(fills	like	a	bar	to	represent	amount	of	charge).

3.	 Lights	indicating	the	Driver	Station’s	status	on	detecting	it:	Red	means	there	is	no
connection,	green	means	a	connection	has	been	established.	If	you	hover	over	each	of
the	3	lines,	a	troubleshooting	message	appears	in	the	messages	tab	(See	Charts	&
Messages)	if	light	is	red.

4.	 Displays	current	mode	enabled	or	disabled	unless	the	first	two	lights	are	red,	in	order,
“No	Robot	Communication”,	“No	Robot	Code”	(See	Tab	Selection	:	➠Operation	Tab	for
modes)

➠	Tab	Selection

FRC	Electrical	Bible

49The	Interface

Red	boxes	indicate	tab	selection	and	the	highlighted	tab	is	the	current	tab,	in	the	blue	box	is
the	currently	displayed	tab(automatically	displays	Operations	Tab	when	Driver

➠	Operation	Tab

1.	 The	depressed	button	is	what	state	the	period	is	in;	can	press	[]\	to	quickly	enable,	can
press	Enter	button	to	quickly	disable	if	the	first	two	lights	in	Main	Display	are	lit
(Communications	&	Robot	Code)

2.	 Available	modes,	current	mode	is	depressed(Teleoperated	by	default),	you	can	switch
modes	by	clicking	one	of	the	3	buttons

3.	 NEW:	Visual	indicator	of	your	PC	CPU	%	usage	Elapsed	Time	since	you	clicked
“Enable”	until	disabled

FRC	Electrical	Bible

50The	Interface

➠	Diagnostics	Tab

1.	 What	the	Driver	Station	has	communications	with;	if	plugged	through	Ethernet	directly	to
something	(router	or	roboRIO),	Enet	Link	will	light	up.	DS	Radio	is	a	legacy	indicator	of
ping	status	of	an	external	radio	at	10.TE.AM.4(Compared	to	last	Driver	Station,	this	light
will	usually	not	be	lit	except	under	specific	circumstances[TESTING])	Bridge	will	be	lit	if
connected	to	the	router,	Robot	will	be	lit	if	it	can	communicate	with	the	roboRIO.	FMS
should	be	lit	if	at	competition	since	it	is	mandatory	to	communicate	with	the	Field
Management	System.	If	unlit,	you	can	hover	over	them	for	troubleshooting	tips	in	the
messages	box	(See	Messages	&	Charts)

➠	Setup	Tab

FRC	Electrical	Bible

51The	Interface

1.	 Configure	your	team	#	here,	click	on	the	box	type	it	in	and	boom

2.	 Practice	timing	controls	how	long	Countdown	till	start	of	each	period,	Autonomous,
Teleoperated,	and	how	long	endgame	is.	Delay	is	how	much	time	is	in	between
Autonomous	and	Teleoperated.

3.	 Type	of	dashboard	you	want	to	bring	up,	default	auto	brings	up	FRC	PC	Dashboard
(ScreenSteps	acknowledges	an	issue	with	setting	Dashboard	type	to	Java	or	C++	so	to
start	up	the	SmartDashboard	would	require	setting	the	default	to	SmartDashboard),
Labview	brings	up	FRC	PC	Dashboard,	C++	and	Java	should	bring	up
SmartDashboard,	and	remote	is	if	the	dashboard	is	on	a	separate	computer/device

4.	 Field	Management	System	protocol,	protocol	for	DS	to	Field	Management	System
communication;	should	be	autoset	to	‘15	which	required	for	2015	competition.	Unless
you	were	participating	in	week	zero	events	in	2014,	this	won’t	have	to	be	touched

➠	USB	Devices	Tab

1.	 USB	Setup	list	holds	all	compatible	devices	hooked	up	to	the	Driver	Station	(AKA,
Laptop,	usually	2,	but	with	USB	splitter,	you	can	connect	more)	If	you	press	a	button	on
a	connected	device,	it	should	be	preceded	by	two	asterisks	(**)	and	highlighted	in
green.	The	rescan	button	forces	a	search	of	or	for	USB	devices.	While	disabled,	it
automatically	updates	USB	devices.	Use	the	rescan	button	or	press	F1	to	force	search
during	a	match.

Locking	&	Rearranging

FRC	Electrical	Bible

52The	Interface

1.	 To	rearrange	USB	devices,	drag	&	drop.	When	you	drag	&	drop	or	double	click	on	one
of	the	devices,	it	underlines	the	device	meaning	it	is	“locked”	Locked	devices	reserve
the	slot	even	while	disconnected	until	reconnected,	represented	by	greyed	out	and
underlined.

➠	Power	&	CAN

1.	 Amount	of	faults	that	occurred	since	last	connection	to	Driver	station;	Comms	mean	DS
to	robot	communication,	12V	is	Brownouts(See	roboRio	for	details),	6V/5V/3.3V	are
User	Voltage	Rail	faults(typically	short	circuits)

2.	 Utilization	%	is	as	it	states	and	the	other	4	are	types	of	CAN	faults	since	last	connection
to	Driver	Station

➠	Messages	&	Charts

FRC	Electrical	Bible

53The	Interface

1.	 Logs	is	an	independent	button	of	the	tabs	on	this	section	of	the	DS

2.	 Clears	all	messages	currently	in	the	box

3.	 Message	Filter:	Filled	in	icon	filters	out	warnings	from	being	posted	in	message	box,
Outline	posts	everything

4.	 The	message	box,	troubleshooting	tips	appear	here,	messages	will	appear	here

Logs

Loads	up	the	DS	Log	File	Viewer,	you	can	view	messages	&	event	data	in	one	display,	a	tool
usually	used	for	troubleshooting.	This	tool	has	its	own	section	to	be	added	elsewhere.

5.Charts	trip	time	for	data	to	robot	with	a	green	line	vs	the	right	axis,	lost	data	packets	to	the
robot	is	in	“blue”	vs	the	left	axis

6.Graphs	battery	voltage	with	a	yellow	line	vs	the	left	axis,	roboRIO	cpu	%	usage	with	a	red
line	vs	the	right	axis

7.Time	scale	for	the	time	axis	of	the	graphs(12s,	1m,	5m)

FRC	Electrical	Bible

54The	Interface

Printing	to	Driver	Station
With	the	2015	update	of	the	Driver	Station,	a	maximum	of	10	lines	of	strings	(each	allowing
for	21	characters)	can	be	manipulated	to	print	to	the	Driver	Station	console.	Note	that	the
DriverStationLCD	Class	was	removed	entirely,	and	now	printing	is	done	through	the
Smartdashboard.

Unlike	the	DiverStationLCD	print	console,	it	is	possible	to	type	directly	into	the	string	fields
as	well	as	read	these	strings	within	your	robot	code.	Some	teams	may	find	this	useful	when
testing	their	robot	code.

Strings	can	be	sent	to	the	Smartdashboard	print	console	using	the	following	code:

SmartDashboard::PutString("DB/String	0",	"This	is	a	string");

SmartDashboard::PutString("DB/String	1",	"This	is	another	string");

	SmartDashBoard::PutString		is	calling	the	Smartdashboard	and	allows	you	to	send	strings	to
the	Driver	Station	printing	console.	Each	line	is	assigned	a	name	from	DB/String	0	to
DB/String9	from	top	to	bottom	then	left	to	right.	The	second	set	of	quotations	can	be
manipulated	to	send	various	strings.

Strings	that	are	on	or	were	sent	to	the	Smartdashboard	can	then	be	retrieved	using	the
following	code:

std::string	dashData	=	SmartDashboard::GetString("DB/String	0",	"myDefaultData"

std::string	dashData	=	SmartDashboard::GetString("DB/String	1",	"myDefaultData"

Here	we	are	creating	a	string	within	the	code	called	dashData	that	is	set	to	the	string	that
was	in	the	first	and	second	line	on	the	SmartDashboard	printer	console.

FRC	Electrical	Bible

55Printing	to	Driver	Station

FRC	Electrical	Bible

56Printing	to	Driver	Station

5.	A	Crash	Course	on	C++

5.1	Variables

➠	Defining	Variables

➠	Instantiating

➠	Constants

5.2	Functions

➠	Arithmetic	Functions

➠	Relational	Operators

➠	Logical	Operators

5.3	Object	Usage

➠	Defining	Objects

➠	Instantiating	Objects

➠	Using	Methods

5.4	The	Joystick

➠	Sample	Code

➠	Explanation

FRC	Electrical	Bible

57A	Crash	Course	on	C++

Variables
A	variable	is	a	location	in	the	computer’s	memory	which	allows	you	to	store	a	value	which
can	later	be	received.	Variables	are	assigned	names,	which	allow	you	to	quickly	and	easily
access	the	location	in	memory	where	the	variable’s	data	is	stored	without	having	to	know	the
actual	memory	address.

When	you	define	a	variable,	you	must	also	declare	the	data	type	of	that	variable.	The
datatype	of	the	variable	determines	what	kind	of	data	the	variable	is	holding	as	well	as	how
much	memory	must	be	set	aside	for	that	variable.	An	example	of	a	data	type	would	be	an
integer	which	is	declared	with	the	‘int’	command.	Integer	variables	store	whole	number
values.

Different	data	types	require	a	different	amount	of	memory,	but	since	the	use	of	C++	in	this
competition	does	not	require	you	to	know	the	details	to	data	type	memory	it	will	not	be
reviewed	in	this	section.

The	tables	to	follow	were	adapted	from	Sams	Teach	Yourself	C++	in	24	Hours.

VARIABLE	TYPES VALUES

unsigned	short	integer 0	to	65,535

short	integer -32,768	to	32,767

unsigned	long	integer 0	to	4,294,967,295

long	integer -2,147,483,648	to	2,147,483,647

integer -2,147,483,648	to	2,147,483,647

unsigned	integer 0	to	4,294,967,295

long	long -9.2	quintillion	to	9.2	quintillion

char 256	character	values

boolean true	or	false

float 1.2e-38	to	3.4e38

double 2.2e-308	to	1.8e308

➠	Defining	Variables
Defining	a	variable	is	very	easy.	Generally,	the	format	for	defining	a	variable	is	the	data	type
followed	by	the	name	you	want	to	assign	your	variable	followed	by	a	semicolon.

FRC	Electrical	Bible

58Variables

int	theExample;

bool	iAmAmazing;

You	must	remember	that	there	are	rules	and	guidelines	to	naming	variables.	Among
programmers,	there	is	proper	naming	etiquette	which	allows	someone	who	is	reading	your
code	to	easily	understand	why	you	named	a	variable	a	certain	way.	Here	is	a	list	of	rules	and
guidelines	to	follow	to	successfully	name	a	variable:

Rules:

1.	 Variable	names	can	be	made	with	any	combination	of	letters

2.	 Variable	names	cannot	contain	spaces,	symbols,	or	punctuation	marks

3.	 Variable	names	may	include	underscores

4.	 Variable	names	cannot	begin	with	a	number	but	may	contain	a	number	elsewhere	in	the
name

5.	 Variable	names	cannot	be	the	same	as	reserved	keywords.	See	below	table	for	a
complete	listing	of	reserved	words.

6.	 C++	is	case	sensitive	so	keep	this	in	mind	while	naming	variables	(int	myInt	refers	to	a
different	location	than	int	MyInt	or	int	myint)

Guidelines:

1.	 Constants	are	usually	written	in	all	caps

2.	 Variables	are	usually	started	with	lower	case	and	if	a	name	contains	more	than	one
word,	the	first	letter	of	the	next	word	is	capitalized	(eg:	int	thisIsAnExample)

3.	 Variables	should	be	named	something	the	describes	what	the	variable	is	going	to	be
used	for

4.	 Avoid	giving	variables	long	names,	it	is	okay	to	abbreviate	long	words

Reserved	Words	(C++)

alignas	(since	C++11)

alignof	(since	C++11)

and

and_eq

asm

auto(changed	in	c++11)

bitand

FRC	Electrical	Bible

59Variables

bitor

bool

break

case

catch

char

char16_t	(since	C++11)

char32_t	(since	C++11)

class

compl

const

constexpr	(since	C++11)

const_cast

continue

decltype	(since	C++11)

default	(changed	in	C++11)

delete	(changed	in	C++11)

do

double

dynamic_cast

else

enum

explicit

export(1)

extern

false

float

for

friend

goto

if

inline

int

long

mutable

namespace

new

noexcept	(since	C++11)

not

not_eq

FRC	Electrical	Bible

60Variables

nullptr	(since	C++11)

operator

or

or_eq

private

protected

public

register

reinterpret_cast

return

short

signed

sizeof

static

static_assert	(since	C++11)

static_cast

struct

switch

template

this

thread_local	(since	C++11)

throw

true

try

typedef

typeid

typename

union

unsigned

using(1)

virtual

void

volatile

wchar_t

while

xor

xor_eq

Adapted	from	cppreference.com

FRC	Electrical	Bible

61Variables

Below	is	an	example	of	how	to	define	variables	in	the	C++	language:

main()

{

					int	a;

					int	ohMyLord;

					char	myChar;

}

To	define	more	than	one	variable	of	the	same	data	type,	you	can	use	the	comma
punctuation.

main()

{

					int	a,	b,	c;

					char	ohMahGlob,	lumpySpacePrincess,	partyTime;

					bool	downLieToMe,	cats;

}

➠	Instantiating
Instantiating	a	variable	is	also	known	as	assigning	a	variable	with	a	value.	The	operator
used	to	assign	values	to	a	variable	is	the	equals	sign,	(=).

The	variable	that	the	data	is	being	assigned	to	is	always	on	the	left	side,	while	the	data	that
is	being	assigned	to	the	variable	is	on	the	right.	It	is	important	to	not	mix	this	up	because
variables	can	also	be	assigned	values	from	similar	variable	types.	This	is	common	while
using	math	functions	with	other	variables.

main()

{

					int	a	=	5;

					int	b	=	10;

					int	c	=	a;

					char	character	=	‘A’;

					bool	counter	=	true;

}

➠	Constants

FRC	Electrical	Bible

62Variables

Sometimes	in	programming,	we	have	variables	with	data	that	we	do	not	want	to	change	at
all.	Although	you	could	easily	just	not	change	the	variable	data,	it	is	safer	to	declare	a
constant	variable.	A	constant	variable	is	a	variable	that	cannot	be	changed	once	it	is
instantiated.

main()

{

					const	int	THIS_IS_A_CONSTANT	=	100;

}

FRC	Electrical	Bible

63Variables

Functions
In	C++,	there	are	basically	three	types	of	functions:	arithmetic	functions,	relational	functions,
and	logical	functions.

➠	Arithmetic	Functions

These	types	of	functions	are	your	basic	math	functions	and	are	used	in	conjunction	with
numeric	data	values	and	variables	(int,	double,	float).	It	is	important	to	remember	that	order
of	operations	does	apply	to	these	functions.

You	should	be	able	to	recognize	these	functions	as	you	have	used	them	since	elementary
school.	The	only	one	that	you	may	not	be	familiar	with	is	the	modulus	function,	which	divides
two	numbers	together	and	returns	the	remainder.	This	function	is	commonly	used	in	true-
false	statements	or	loops	to	recognize	when	a	numerical	variable	being	analyzed	is	positive
or	negative	or	a	multiple	of	a	certain	number.	Parentheses	are	used	like	in	algebra	to	say
which	operations	should	be	done	first	if	those	actions	differ	from	the	default	order	of
operations.

In	programming,	it	is	also	quite	often	to	use	variables	in	conjunction	with	arithmetic
functions.	To	use	variables	in	this	way,	all	you	need	to	do	is	use	the	variable’s	defined	name
where	numbers	would	usually	be	used.	It’s	the	same	as	basic	algebra.

Sign Meaning

+ Addition

- Subtraction

/ Division

* Multiplication

% Modulus

= Assignment	Operator

(operator	here) Parenthesis	(order	of	operation)

++/-- Increment/decrement	numeric	value	by	1

FRC	Electrical	Bible

64Functions

main()

{

						int	a	=	5;

						int	b	=	10;

						int	c	=	a	+	b;

						int	d	=	c	*	a;

						int	e	=	a(3	+	b);

						int	f	=	b	%	2;

						a++;

}

	int	a		is	assigned	the	value	5	and		int	b		is	assigned	the	value	10.		int	c	,	is	the	sum	of	a
and	b.	Because		a		and		b		are	assigned	the	value	5	and	10,	respectively,		c		is	currently	at
	a		value	15.	It	can	be	subject	to	change	in	the	event	the	values		a		and	b	change.		int	d		is
the	product	of		c		and		a	,	(15*5).	int		e		is	the	product	of		a		and	the	sum	of		3+b	.		int	f		is
the	remainder	of		b		divided	by	2	(it	will	return		a		value	of	either	0	or	1).

➠	Relational	Operators
Relational	operators	are	used	to	determine	whether	two	numbers	are	equal,	or	whether	one
is	greater	or	less	than	the	other.	Every	relational	expression	returns	either	1(true)	or	0
(false).	These	operators	are	used	in	statements	(if,	else,	while)	in	order	to	create
expressions	that	set	conditions	for	that	code	inside	the	statement.	Be	sure	not	to	confuse	the
assignment	operator	(=)	with	the	relation	operator	of	equality	(==).

FRC	Electrical	Bible

65Functions

Name Operator Sample Evaluation

Equals == 	100==50;	 false

	50==50;	 true

Not	Equals != 	100!=50;	 true

	50!=50;	 false

Greater	than > 	100>50;	 true

	50>50;	 false

Greater	than	or	equals >= 	100>=40;	 true

	50>=50;	 true

Less	than < 	100<50	 false

	50<50;	 false

Less	than	or	equals <= 	100<=50	 false

	50<=50	 true

➠	Logical	Operators
Logical	operators	are	used	in	conjunction	with	relational	operators	to	create	more	complex
statement	expressions.

OPERATOR SYMBOL EXAMPLE

AND 	&&	 2:2

OR (2	pipes) 2:3

NOT 	!	 2:4

A	logical	AND	statement	evaluates	two	expressions,	and	if	both	expressions	are	true,	the
logical	AND	statement	is	true	as	well.

A	logical	OR	statement	also	evaluates	two	expressions.	If	either	or	both	are	true,	the	entire
expression	is	true.

A	NOT	statement	compares	whether	a	condition	is	NOT	what	is	stated	(i.e.	switches	the
return	value	from	true	to	false	and	vice	versa).

When	using	logical	operators	to	form	statements,	make	sure	you	use	parentheses	to	make
the	order	of	precedence	clearer	to	the	compiler	to	avoid	any	errors.	For	example,

if(x	>	5	&&	y	>	5	||	z	>	5)

FRC	Electrical	Bible

66Functions

http://en.wikipedia.org/wiki/Vertical_bar

This	statement	goes	to	show	how	ambiguous	these	statements	can	get	if	parentheses	are
not	used.	Do	you	want	the	statement	to	return	true	if	x	>	5	and	y>5	or	when	just	z	>5,	or	did
you	want	the	statement	to	return	true	when	x>5	and	when	either	y>5	or	z>5?	If	you	wanted
the	latter,	then	you	should	rewrite	the	statement	to	make	things	clearer:

if((x	>	5	&&	y	>	5)	||	z	>	5)

FRC	Electrical	Bible

67Functions

Object	Usage
In	object-oriented	programs	(OOP),	objects	are	basically	objects	like	that	of	the	real	world,
and	thus	have	certain	behaviors	and	characteristics.	Characteristics	of	an	object	in	OOP
include	any	variables	or	other	objects	that	are	declared	in	the	class	that	the	object	is	written
in.	Behaviors	of	an	object	are	methods	that	the	object	contains	in	its	class	code.

We	will	use	the	Jaguar	class	from	the	WPI	library	to	help	explain	this	section.	Click	here	to
view	it.

➠	Defining	Objects
Defining	objects	is	a	similar	to	defining	variables,	but	instead	the	data	type	is	replaced	by	the
name	of	the	object.	After	the	object	name	comes	the	name	that	you	assign	to	the	address
location	of	the	object.	In	terms	of	the	Jaguar	class,	a	Jaguar	object	is	defined	as:

Jaguar	jag1;

Jaguar	jag2;

Jaguar	example;

Remember	that	each	Jaguar	object	that	you	create	is	a	different	instance	of	the	object	and
that	different	spaces	in	memory	are	created	for	instance	variables	of	each	Jaguar	object.
The	name	you	gave	to	a	Jaguar	object	is	the	only	thing	you	have	to	distinguish	between
Jaguars.

➠	Instantiating	Objects
Instantiating	an	object	is	quite	different	from	defining	a	variable.	When	instantiating	an
object,	you	must	use	the		new		operator.	Followed	by	the		new		operator	is	the	object’s
constructor	signature.	An	object’s	constructor	signature	may	look	like	this:

Jaguar	(UINT32	channel)

As	you	can	see	the	object	name	is	displayed	along	with	some	code	inside	parentheses.	The
code	inside	the	parentheses	is	called	a	parameter.	Parameters	are	where	you	pass	data	into
the	object	so	that	the	object	can	use	it.	Notice	that	data	in	parameters	are	separated	by
commas.	In	the	above	case,	the	object	constructor	asks	you	to	input	a	float	and	a	channel
number.	So	an	example	instantiation	would	look	something	like	the	following:

FRC	Electrical	Bible

68Object	Usage

http://mililanirobotics.org/documentation/electrical/WPILib2015C++/classJaguar.html

jag1(1)

Where		1		is	the	number	of	a		UINT32	channel		(the	PWM	OUT	port	the	jaguar	occupies	on
the	digital	sidecar).

Object	classes	often	have	multiple	constructors	which	ask	for	different	sets	of	parameters.	In
the	case	of	the	Solenoid	class,	here	are	the	following	constructors	for	a	Solenoid	object.

Solenoid	(uint32_t	channel)	//Constructor	using	the	default	PCM	ID

Solenoid	(uint8_t	moduleNumber,	uint32_t	channel)	//Constructor	that	specifies	the	PCM	ID.

You	should	see	that	the	only	thing	different	is	the	parameters	that	must	be	called.	The	first
calls	for	the	PCM	channel	only	(assumes	the	PCM	ID	as		0).	To	call	the	first	constructor
after	defining		sol1	,	you	would	type:

sol1(1)

which	means		sol1		is	assigned	to	PWM	port		1		on	the	PCM	and	is	automatically	assumed
to	be	on	the	PCM	ID	of		0	.

Because	the	roboRIO	can	support	more	than	one	PCM,	anything	connected	a	PCM	with	an
ID	that	is	not		0		will	need	to	use	the	second	constructor.

➠	Using	Methods
In	programming,	objects	alone	do	no	more	than	they	do	in	reality.	Simply	stating	“the	Jaguar
exists!”	will	not	make	your	robot	move,	nor	will	merely	declaring	it	in	your	code	make
anything	happen.

The	real	work	is	done	through	methods,	a	unique	set	of	commands	that	each	object	has.
These	are	noted	by	a		.		after	the	name	of	a	particular	object	and	are	always	followed	by
	()	,	though	often	there	are	some	values	passed	into	the	parentheses.	In	the	Jaguar	class,
for	example,	one	might	see	the	following	code	fragment:

jag1.Set(0.5);

The	name	of	the	object	is		jag1	,	which	has	previously	been	declared	to	be	a	Jaguar.	The
method	is		Set	,	which,	as	one	might	expect,	sets	the	speed	of	the	motor.	The		0.5		inside
the	parentheses	is	called	the	parameter,	which	varies	depending	on	the	method	used.	Here,

FRC	Electrical	Bible

69Object	Usage

http://mililanirobotics.org/documentation/electrical/WPILib2015C++/classSolenoid.html

it	is	a	float	value	from		-1		to		1	,	inclusive,	but	often	you	must	pass	an	int,	bool,	or	even
another	object	as	a	parameter.	For	object-specific	information	on	methods	and	parameters,
see	the	section	on	that	particular	object	or	use	the	WPI	Library.

Note	that	just	as	each	object	will	have	multiple	methods,	different	objects	can	have	methods
of	the	same	name	and	may	or	may	not	do	different	things.	The	Victor	class,	for	example,
also	has	a	Set	method	that	functions	exactly	the	same,	but	the	Relay	class	takes	an	entirely
different	data	type	and	functions	purely	as	an	on/off	switch.

FRC	Electrical	Bible

70Object	Usage

The	Joystick
Logitech	Gamepad	F310

Logitech	has	made	a	home-touch-feely	controller	as	it	appears	to	be	a	standard	controller.
Most	people	have	played	video	games	with	a	controller	like	this,	so	there’s	nothing	new	to
learn	about	it.	On	the	back	is	a	little	slide	button,	make	sure	it	is	set	to	the	right	and	tape	it
like	that	to	prevent	incidents	of	bad	joystick.	Make	sure	mode	light	is	off.

AndyMark

FRC	Electrical	Bible

71The	Joystick

http://www.andymark.com/product-p/am-2064.htm

Logitech	Attack	3	USB	Joystick

This	Attack	3	Joystick	looks	awesome,	doesn’t	it	exude	the	feeling	of	robotics?	One	hand	to
move	the	single	joystick,	the	other	to	press	the	buttons	on	the	bottom.	The	joystick	class	in
the	WPI	Library	does	support	this	joystick	and	all	if	its	many	inputs.

FIRST	Choice

Joystick	Class	(C++)

➠	Sample	Code

FRC	Electrical	Bible

72The	Joystick

http://firstchoicebyandymark.com/fc15-064
http://mililanirobotics.org/documentation/electrical/WPILib2015C++/classJoystick.html

#include	"WPILib.h"

class	Robot:	public	SampleRobot

{

				Joystick	stick;

public:

				Robot()	:

								stick(0)	//	Use	joystick	on	port	0.

				{

				}

				void	OperatorControl()

				{

								while(IsOperatorControl())

								{

												if(stick.GetRawAxis(1)	>	.2)

												{

												}

												if(stick.GetRawAxis(2)	>	.2)

												{

												}

												if(stick.GetRawButton(1)	==	1)

												{

												}

												if(stick.GetRawButton(4)	==	1)

												{

												}

												if(stick.GetTop()	==	1)

												{

																if(stick.GetRawAxis(3))

																{

																}

																if(stick.GetRawAxis(4))

																{

																}

												}

								}

				}

};

START_ROBOT_CLASS(Robot);

FRC	Electrical	Bible

73The	Joystick

➠	Explanation

Joystick	stick;

Declare	one		Joystick		object.	Declared	between		class	RobotDemo	:	public	SampleRobot	
and		public	:	RobotDemo(void):	

stick(0);

Instantiate	one		Joystick		object	in	USB	port	of	computer	(limited	to	#	of	USB	ports	on
computer).	Instantiation	occurs	between	the		public	:	RobotDemo(void):		and	the	braces({
}).	If	not	the	last	instantiated	object	in	list,	it	needs	a	comma	after	instantiation	statement
like	listing.	If	it	is,	it	does	not	need	any	punctuation	after	the	instantiation	before	the	braces;
no	comma,	no	semicolon,	no	period,	etc.	If	syntax	not	followed,	error	occurs.

FRC	Electrical	Bible

74The	Joystick

void	OperatorControl()

{

				while(IsOperatorControl())

				{

								if(stick.GetRawAxis(1)	>	.2)

								{

								}

								if(stick.GetRawAxis(2)	>	.2)

								{

								}

								if(stick.GetRawButton(1)	==	1)

								{

								}

								if(stick.GetRawButton(4)	==	1)

								{

								}

								if(stick.GetTop()	==	1)

								{

												if(stick.GetRawAxis(3))

												{

												}

												if(stick.GetRawAxis(4))

												{

												}

								}

				}

}

Joystick	functions	are	the	sauce	for	conditions	in		OperatorControl	.	By	doing	certain	actions
on	the	joystick	object	(this	instance	is	using	a	Logitech	F310	Gamepad),	it	executes	the
code	that	would	be	written	in	the	braces.	For	example,		GetRawAxis(1)		corresponds	to	the
left	stick	y-axis(up	and	down)	of	the	F310	Gamepad	or	the	y-axis	of	the	Extreme	3D	Pro
joystick;	the	|	|(or)	corresponds	to	positive(up)	or	negative(down)	input.	The	axis	is	usually
associated	with	driving	the	robot.		GetRawButton()		only	returns	1	if	it	is	being	pressed;
	GetRawButton(1)		is	the	x-button	on	the	F310	Gamepad	or	the	trigger	of	the	Extreme	3D	Pro
joystick.		GetTop		is	the	smaller	stick	on	the	Extreme	3D	Pro,	and	it	only	returns		1		if	top	is
being	used	or		0		if	not,	so	extra	conditions	for	axis	3	&	4,	y-axis	and	x-axis	of	top
respectively.	For	the	F310	Gamepad	it	would	be	axis	6	&	5,	y-axis	and	x-axis	respectively.

FRC	Electrical	Bible

75The	Joystick

6.	Motor	Controllers

6.1	General	Overview

6.2	Motors

➠	Motor	Controller	Varieties

6.3	Jaguar

➠	Sample	Code

➠	Explanation

6.4	Victor	888

➠	Sample	Code

➠	Explanation

6.5	Talon

➠	Sample	Code

➠	Explanation

6.6	Talon	SRX

➠	Wiring

➠	CAN

➠	Sample	Code

➠	Explanation

6.8	Spike

➠	Sample	Code

➠	Explanation

FRC	Electrical	Bible

76Motor	Controllers

6.9	Fans

FRC	Electrical	Bible

77Motor	Controllers

General	Overview
Motor	controllers	are	what	they	sound	like;	they	allow	us	to	control	the	amount	of	power	sent
to	the	motor.	They	serve	as	the	middlemen	from	the	PDB	to	the	motor	itself.

FRC	Electrical	Bible

78General	Overview

Motors

CIM	motor

Physical	Specs

Size:	2.5	inch	diameter,	4.34	inch	long	body
Output	Shaft	size:	0.313	+/-	0.0004,	with	2mm	keyway
Weight:	2.82	pounds
Mounting	Holes:	#10-32	tapped	holes	(2),	on	a	2"	bolt	circle

Performance

Voltage:	12	volt	DC
No	load	RPM:	5,310	(+/-	10%)
Free	Current:	2.7	amps	Maximum	Power:	337	Watts	(at	2655	rpm,	172	oz-in,	and	68
amps)
Stall	Torque:	2.42	N-m,	or	343.4	oz-in
Stall	Current:	133	amps

AndyMark

mini-CIM	motor

FRC	Electrical	Bible

79Motors

http://www.andymark.com/CIM-motor-FIRST-p/am-0255.htm

⅔	power	of	CIM,	similar	form	factor	and	same	mounting

Physical	Specs

Output	Shaft	size:8mm	(0.314in)	with	2mm	keyway
Size:	2.5”	diameter,	3.36”	long
Weight:	2.16	lbs

Performance

Free	Speed:6,200	rpm	(+/-	10%)
Free	Current:1.5A
Maximum	Power:230	W
Stall	Torque:12.4	in-lbs	[1.4	N-m]
Stall	Current:86A
Mounting	Holes:(4)	#10-32	tapped	holes	on	a	2"	bolt	circle

Vex

Window	Motor

FRC	Electrical	Bible

80Motors

http://www.vexrobotics.com/217-3371.html

Make	sure	you	remove	the	locking	pins.

Stall	Torque:	9.3	Nm
Free	Speed:	92	RPM
Free	Current:	2.5	A
Stall	Current:	25	A

Servo

Should	not	be	hooked	up	to	ANY	motor	controllers	and	directly	to	the	PWM	port	in	the
roboRIO.

AndyMark

➠	Motor	Controller	Varieties

FRC	Electrical	Bible

81Motors

http://wiki.team1640.com/index.php?title=Nisso-Denko_%28Window%29_Motor_Locking_Pins
http://www.andymark.com/SearchResults.asp?Search=servo

It	is	possible	to	control	all	the	motors	above	(except	the	servo)	with	the	below	motor
controllers;	however,	the	breakers	used	have	to	be	able	to	protect	the	wires	and	provide
enough	power	for	the	motor	used.	For	example,	it	is	possible	to	connect	16	gauge	wire	with
a	20	amp	CB	to	a	talon,	but	would	not	provide	enough	power	if	connected	to	say	a	CIM.
There	are	two	side	wires	that	connect	to	each	motor	controller:	the	M-/M+	and	the	V-/V+
side.	The	‘M’	stands	for	Motor,	which	denotes	the	wires	attached	here	should	be	the	ones
also	attached	to	the	motor.	The	other	side	connects	to	the	PDB.	In	both	cases,	the	power
goes	to	the	+	and	ground	to	the	-.	There	is	also	a	thin	slot	where	PWM	cables	plug	into	from
the	Digital	Sidecar,	with	its	direction	based	on	the	small	notations	on	the	motor	controllers
(often,	ground	is	facing	the	side	marked	with	a	‘B’).

FRC	Electrical	Bible

82Motors

Jaguar

There	are	jumpers	that	can	be	used	in	two	places,	the	motor	coast/brake,	and	the	Limit
Switches.	The	motor	coast/brake	controls	if	after	the	robot	stops	it	slowly	decelerates
(coasts),	or	immediately	decelerates	(brakes).	The	jumpers	are	to	be	installed	in	the	limit
switch	area	if	there	are	no	limit	switches	being	used.	Jaguars	use	the	CAN	network	folder.
The	status	LED	indicates	many	things	like	operation,	fault,	calibration,	and	other	conditions
using	yellow,	red,	and	green	lights.

FRC	Electrical	Bible

83Jaguar

FRC	Electrical	Bible

84Jaguar

➠	Sample	Code

Jaguar	Class	(C++)

FRC	Electrical	Bible

85Jaguar

http://mililanirobotics.org/documentation/electrical/WPILib2015C++/classJaguar.html

#include	"WPILib.h"

class	RobotDemo	:	public	SampleRobot	{

				Jaguar	jaguar;

				Joystick	stick;

public:

				RobotDemo(void):

								jaguar(1),

								stick(1)

								{

								}

				void	OperatorControl()	{

								if(stick.GetRawButton(1))	{

												jaguar.Set(1.0);

								}

								else	if(stick.GetRawButton(2))	{

												jaguar.Set(-1.0);

								}

								else	{

												jaguar.Set(0);

								}

				}

};

START_ROBOT_CLASS(RobotDemo);

➠	Explanation

Jaguar	jaguar;

Declare	Jaguar	motor	controller	as		jaguar	;	declared	between		public	SampleRobot		and
	public	:	RobotDemo	

jaguar(1),

FRC	Electrical	Bible

86Jaguar

Initialize	Jaguar	motor	controller	as	port	#	1	in	Digital	Sidecar	(PWM	Out),	initialized	between
	public	:	RobotDemo		and	the	braces({	}).	If	it	is	not	the	last	object	initialized,	it	needs	a
comma	like	a	list.	If	it	is	the	last	object	initialized,	no	punctuation;	no	comma,	no	semicolon,
no	period,	etc.	or	you	will	get	an	error.

void	OperatorControl()	{

				if(stick.GetRawButton(1))	{

								jaguar.Set(1.0);

				}

				else	if(stick.GetRawButton(2))	{

								jaguar.Set(-1.0);

				}

				else	{

								jaguar.Set(0);

				}

}

Joystick	class	is	gone	into	depth	in	an	earlier	section	of	this	manual.	Motor	controllers	are
put	into	results	of	conditions	because	a	free-spinning	motor	is	a	waste	of	power	and	there	is
no	control	over	the	motor(which	is	why	it	is	a	motor	controller)	The		.Set		method	of	the
class	accepts	a	float	between	-1.0	to	1.0	as	a	parameter	and	sets	the	speed	of	the	motor	to
that	float.	1.0	is	full	speed	“forward”,	-1.0	is	full	speed	“backward.”	The	motor	when	initialized
begins	at		.Set(0)	.	The		else	jaguar.Set(0)		is	to	stop	the	motor	because	unless	the	motor
controller	is	set	to	0,	the	motor	remains	at	the	last		.Set()		value.

FRC	Electrical	Bible

87Jaguar

Victor	888

The	victor	is	similar	to	the	jaguar,	but	sacrifices	computing	power	for	a	lighter	weight	and	a
smaller	size.

FRC	Electrical	Bible

88Victor	888

When	wiring,	make	sure	that	the	PWM	is	plugged	in	so	that	the	black	wire	is	facing	the
inside	(towards	the	fan).	Pay	special	attention	to	the	M+	M-	V+	and	V-	on	the	sides	of	the
Victor	when	wiring	it	to	the	motor	and	the	power	distribution	board.

Victor	888	User	Manual

Victor	888	-	VEX	Store

➠	Sample	Code

Victor	Class	(C++)

#include	"WPILib.h"

class	RobotDemo	:	public	SampleRobot	{

				Victor	victor;

				Joystick	stick;

public:

				RobotDemo(void):

								victor(1),

								stick(1)

								{

								}

				void	OperatorControl()	{

								if(stick.GetRawButton(1))	{

												victor.Set(1.0);

								}

								else	if(stick.GetRawButton(2))	{

												victor.Set(-1.0);

								}

								else	{

												victor.Set(0);

								}

				}

};

START_ROBOT_CLASS(RobotDemo);

➠	Explanation

FRC	Electrical	Bible

89Victor	888

http://www.mililanirobotics.org/documentation/electrical/Victor%20888.pdf
http://www.vexrobotics.com/217-2769.html
http://mililanirobotics.org/documentation/electrical/WPILib2015C++/classVictor.html

Victor	victor;

Declare	victor	motor	controller	as		victor	;	declared	between		public	SampleRobot		and
	public	:	RobotDemo	

	victor(1),	

Initialize	victor	motor	controller	as	port	#	1	in	Digital	sidecar	PWM	Out.	This	is	stated
between		public	:	RobotDemo		and	the	braces({	}).	If	it	is	not	the	last	object	initialized,	it
needs	a	comma	like	a	list.	If	it	is	the	last	object	initialized,	no	punctuation;	no	comma,	no
semicolon,	no	period,	etc.	or	you	will	get	an	error.

void	OperatorControl()	{

				if(stick.GetRawButton(1))	{

								victor.Set(1.0);

				}

				else	if(stick.GetRawButton(2))	{

								victor.Set(-1.0);

				}

				else	{

								victor.Set(0);

				}

}

Joystick	class	is	gone	into	depth	in	an	earlier	section	of	this	manual.	Motor	controllers	are
put	into	results	of	conditions	because	a	free-spinning	motor	is	a	waste	of	power	and	there	is
no	control	over	the	motor	(which	is	why	it	is	a	motor	controller)	The		.Set		method	of	the
class	accepts	a	float	between		-1.0		to		1.0		as	a	parameter	which	sets	the	speed	of	the
motor	to	that	float.		1.0		is	full	speed	“forward”,		-1.0		is	full	speed	“backward.”	The	motor
when	initialized	begins	at		.Set(0)	.	The	else		victor.Set(0)		is	to	stop	the	motor;	unless	the
motor	controller	is	set	to		0	,	the	motor	remains	at	the	last		.Set()		value.

NOTE:	The	883,	884	and	885	models	have	been	discontinued,	but	the	manufacturer’s
documentation	can	be	found	below.

Victor	883/885	User	Manual

Victor	884	User	Manual

FRC	Electrical	Bible

90Victor	888

http://www.mililanirobotics.org/documentation/electrical/Victor%20883-885.pdf
http://www.mililanirobotics.org/documentation/electrical/Victor%20884.pdf

Talon

The	talon	is	interchangeable	with	the	jaguar.	It	has	a	peak	output	of	100A	and	60A
continuous	current.	There	are	mounting	holes	for	an	optional	40mm	fan.	The	LED	on	the
talon	is	a	status	indicator.

Talon	User	Manual

➠	Sample	Code

FRC	Electrical	Bible

91Talon

http://www.mililanirobotics.org/documentation/electrical/Talon%20User%20Manual.pdf

Talon	Class	(C++)

#include	"WPILib.h"

class	RobotDemo	:	public	SampleRobot	{

				Talon	talon;

				Joystick	stick;

public:

				RobotDemo(void):

								talon(1),

								stick(1)

								{

								}

				void	OperatorControl()	{

								if(stick.GetRawButton(1))	{

												talon.Set(1.0);

								}

								else	if(stick.GetRawButton(2))

								{

												talon.Set(-1.0);

								}

								else	{

												talon.Set(0);

								}

				}

};

START_ROBOT_CLASS(RobotDemo);

➠	Explanation

Talon	talon;

Declare	talon	motor	controller	as		talon	;	declared	between		class	:	SampleRobot		and
	public	:	RobotDemo	.

talon(1),

FRC	Electrical	Bible

92Talon

http://mililanirobotics.org/documentation/electrical/WPILib2015C++/classTalon.html

Initialize	talon	motor	controller	as	connected	to	port	#1	in	the	Digital	Sidecar	(PWM	Out);
initialized	between		public	:	RobotDemo		and	the	braces({	}).	If	it	is	not	the	last	object
initialized,	it	needs	a	comma	like	a	list.	If	it	is	the	last	object	initialized,	no	punctuation;	no
comma,	no	semicolon,	no	period,	etc.	or	you	will	get	an	error.

void	OperatorControl()	{

				if(stick.GetRawButton(1))	{

								talon.Set(1.0);

				}

				else	if(stick.GetRawButton(2))	{

								talon.Set(-1.0);

				}

				else	{

								talon.Set(0);

				}

}

Joystick	class	is	gone	into	depth	in	an	earlier	section	of	this	manual.	Motor	controllers	are
put	into	results	of	conditions	because	a	free-spinning	motor	is	a	waste	of	power	and	there	is
no	control	over	the	motor	(which	is	why	it	is	a	motor	controller)	The	.Set	method	of	the	class
accepts	a	float	between		-1.0		to		1.0		as	a	parameter	which	sets	the	speed	of	the	motor	to
that	float.		1.0		is	full	speed	“forward”,		-1.0		is	full	speed	“backward.”	The	motor	when
initialized	begins	at		.Set(0)	.	The	else		talon.Set(0)		is	to	stop	the	motor;	unless	the	motor
controller	is	set	to		0	,	the	motor	remains	at	the	last		.Set()		value.

FRC	Electrical	Bible

93Talon

Talon	SRX

The	Talon	SRX	is	a	new	iteration	of	the	Talon	motor	controller	series	that	was	introduced	in
the	2015	FRC	season.	The	SRX	is	unique	as	it	is	CAN	enabled	and	capable	of	operating
with	the	roboRIO,	PCM,	and	VRM,	which	all	use	CAN	protocols.	Because	the	Talon	SRX
was	designed	without	a	built-in	ventilation	system,	you	should	mount	it	in	an	area	with
adequate	airflow.	The	user	guide	recommends	mounting	it	to	the	robot’s	metal	frame
because	it	will	act	like	a	giant	heatsink.

Specs

Dimensions:	2.75”	x	1.85”	x	.96”	tall
Weight:	.2lbs	including	wires
15	kHz	output	switching	frequency
60	Amp	Continuous	current,	100	Amp
2	x	Mounting	Holes	(one	at	each	end,	6-32	fasteners)
Supports	CAN	(Controller	Area	Network),	SPI	(Serial	Peripheral	Interface),	Digital	I/O,
and	USART	(Universal	Synchronous/Asynchronous	Receiver/Transmitter)

➠	Wiring

FRC	Electrical	Bible

94Talon	SRX

➠	Can

FRC	Electrical	Bible

95Talon	SRX

Talon	SRX	User	Manual

➠	Sample	Code

TalonSRX	Class	(C++)

FRC	Electrical	Bible

96Talon	SRX

http://www.mililanirobotics.org/documentation/electrical/Talon%20SRX%20User%20Manual.pdf
http://mililanirobotics.org/documentation/electrical/WPILib2015C++/classTalonSRX.html

#include	"WPILib.h"

class	RobotDemo	:	public	SampleRobot	{

				TalonSRX	talonsrx;

				Joystick	stick;

public:

				RobotDemo(void):

								talonsrx(1),

								stick(1)

								{

								}

				void	OperatorControl()	{

								if(stick.GetRawButton(1))	{

												talonsrx.Set(1.0);

								}

								else	if(stick.GetRawButton(2))	{

												talonsrx.Set(-1.0);

								}

								else	{

												talonsrx.Set(0);

								}

				}

};

START_ROBOT_CLASS(RobotDemo);

➠	Explanation

TalonSRX	talonsrx;

Declare	Talon	SRX	motor	controller	as		talon	;	declared	between	public	SampleRobot	and
public	:	RobotDemo

talonsrx(1),

Initialize	talon	SRX	motor	controller	as	connected	to	port	#1	in	the	Digital	Sidecar	(PWM
Out);	initialized	between		public	:	RobotDemo		and	the	braces({	}).	If	it	is	not	the	last	object
initialized,	it	needs	a	comma	like	a	list.	If	it	is	the	last	object	initialized,	no	punctuation;	no
comma,	no	semicolon,	no	period,	etc.	or	you	will	get	an	error.

FRC	Electrical	Bible

97Talon	SRX

void	OperatorControl()	{

				if(stick.GetRawButton(1))	{

								talonsrx.Set(1.0);

				}

				else	if(stick.GetRawButton(2))	{

								talonsrx.Set(-1.0);

				}

				else	{

								talonsrx.Set(0);

				}

}

Joystick	class	is	gone	into	depth	in	an	earlier	section	of	this	manual.	Motor	controllers	are
put	into	results	of	conditions	because	a	free-spinning	motor	is	a	waste	of	power	and	there	is
no	control	over	the	motor	(which	is	why	it	is	a	motor	controller)	The	.Set	method	of	the	class
accepts	a	float	between		-1.0		to		1.0		as	a	parameter	which	sets	the	speed	of	the	motor	to
that	float.		1.0		is	full	speed	“forward”,		-1.0		is	full	speed	“backward.”	The	motor	when
initialized	begins	at		.Set(0)	.	The	else		talonsrx.Set(0)		is	to	stop	the	motor;	unless	the
motor	controller	is	set	to		0	,	the	motor	remains	at	the	last		.Set()		value.

FRC	Electrical	Bible

98Talon	SRX

Spike

B	indicates	that	the	ground	side	of	the	PWM	faces	inward

Spikes	are	motor	controllers	used	in	driving	small	motors	in	forward,	reverse,	or	stop
(brake).	It	uses	a	20A	circuit	breaker.	It	can	also	be	wired	to	compressors	and	solenoids	and
its	indicator	lights	are	different	for	motors	and	solenoids,	as	shown	in	the	table	below.

FRC	Electrical	Bible

99Spike

Spike	User	Manual

➠	Sample	Code

Relay	Class	(C++)

FRC	Electrical	Bible

100Spike

http://www.mililanirobotics.org/documentation/electrical/2005%20Spike%20Blue%20Guide.pdf
http://mililanirobotics.org/documentation/electrical/WPILib2015C++/classRelay.html

#include	"WPILib.h"

class	RobotDemo	:	public	SampleRobot	{

				Relay	spikeblue;

				Joystick	stick;

public:

				RobotDemo():

								spikeblue(1,Relay::kForward),

								stick(1)

				{

				}

				void	Autonomous()	{

								spikeblue.Set(Relay::kOn);

				}

				void	OperatorControl()	{

								while	(IsOperatorControl())	{

												if(stick.GetRawButton(1))	{

																spikeblue.Set(Relay::kOn);

												}

												else	{

																spikeblue.Set(Relay::kOff);

												}

								}

				}

};

START_ROBOT_CLASS(RobotDemo);

➠	Explanation

Relay	spikeblue;

Declare	spike	relay	as	name		spikeblue	.	The	declaration	occurs	between		class	RobotDemo	:
public	SampleRobot		and		public	:	RobotDemo():	

FRC	Electrical	Bible

101Spike

spikeblue(1,Relay::kForward),

Instantiate	the	spike	relay	with	the	parameters	[Digital	Sidecar	Port#],	[direction	of	current
[kForward,	kBackward,	or	kBothDirections]]	This	is	instantiated	between		public	:
RobotDemo():		and	the	braces	({	}).	If	it	is	not	the	last	object	initialized,	it	needs	a	comma
like	a	list.	If	it	is	the	last	object	initialized,	no	punctuation;	no	comma,	no	semicolon,	no
period,	etc.	or	you	will	get	an	error.

void	Autonomous()	{

								spikeblue.Set(Relay::kOn);

				}

void	OperatorControl()	{

				while	(IsOperatorControl())	{

								if(stick.GetRawButton(1))	{

												spikeblue.Set(Relay::kOn);

								}

								else	{

												spikeblue.Set(Relay::kOff);

								}

				}

}

The	Joystick	class	has	already	been	covered	in	a	previous	section	of	the	manual.	Controls
current	to	whatever	is	on	the	other	side	of	the	spike(one	side	connected	to	the	PDB).	In
autonomous,	if	there	is	something	wired	to	the	spike	that	needs	to	be	turned	on,	it	can	be
	Set(Relay::kOn)	.	To	turn	it	off,	use		Set(Relay::kOff)	.	Note	that	it	will	not	shut	off
automatically	and	hence	manual	off	command.	In		OperatorControl	,	the	relay	will	often	be
inserted	inside	control	statements	to	prevent	loose	relay	on/off.Usually	turning	it	on	if	button
set	in	if	condition	is	pressed	otherwise	relay	off.	Or	vice	versa	if	need	be.

FRC	Electrical	Bible

102Spike

Fans

Before	the	pedantic	comment	regarding	our	table	of	contents,	no,	fans	are	not	motor
controllers.	They	are,	however,	secured	on	top	of	motor	controllers	to	cool	them	down;	being
fans	and	all.	Talons	and	Victors	have	mounting	holes	that	require	6-32	inch	screws.	The
terminals	connect	to	the	V	+/-	side	on	the	motor	controller	(you	don’t	want	your	fans	turning
off	and	on	in	unison	with	your	motors).

FRC	Electrical	Bible

103Fans

7.	Drive	Code

7.1	Box	on	Wheels

➠	The	Code

➠	The	Explanation

7.2	Box	on	Wheels	Template	vs	Custom	Program

➠	The	Code

➠	The	Explanation

7.3	Custom	Program	(Tank	Drive)

➠	The	Code

➠	The	Explanation

7.4	Custom	Program	(Mecanum	Drive)

➠	Introduction	&	Wheel	Configuration

➠	Movement	Configuration

➠	Sample	Testing	Code

➠	The	Explanation

➠	Tested	and	Modified	Code

➠	The	Explanation

FRC	Electrical	Bible

104Drive	Code

Box	on	Wheels
You	have	now	opened	up	a	bare	bones	template	to	write	your	robot	code;	congratulations
you’ve	made	a	box	on	wheels,	now	to	understand	what	you’re	box	on	wheels	does,	before
you	destroy	it	and	create	your	own	completely	improved	code.	It	is	necessary	to	understand
the	classes	that	created	this	box	on	wheels	so	you	know	that	you	just	didn’t	create	another
box	on	wheels	program,	but	it	is	a	good	start.

➠	The	Code
The	drive	program	in	it’s	entirety:

#include	“WPILib.h”

//Last	modified:	January	19,	2014	by:	Alan

/*

	This	is	a	demo	program	showing	the	use	of	the	RobotBase	class.The	SampleRobot	class	is	the	base	of	a	robot	application	that	will	automatically	call	your

	Autonomous	and	OperatorControl	methods	at	the	right	time	as	controlled	by	the	switches	on	the	driver	station	or	the	field	controls.

	*/

class	RobotDemo	:	public	SampleRobot	{

				RobotDrive	myRobot;				//	robot	drive	system

				Joystick	stick;				//	only	joystick

public:

				RobotDemo(void):

								myRobot(1,	2),				//	these	must	be	initialized	in	the	same	order

								stick(1)										//	as	they	are	declared	above.

				{

								myRobot.SetExpiration(0.1),	//you	can	initialize	things	here	like	gyros	at	construction

				}

//	Drive	left	&	right	motors	for	2	seconds	then	stop

				void	Autonomous(void)	{

								myRobot.SetSafetyEnabled(false);

								myRobot.Drive(0.5,	0.5);				//	drive	forward	at	half	speed

								Wait(2);																				//	for	2	seconds

								myRobot.Drive(0.0,	0.0);				//	stop	robot

				}

FRC	Electrical	Bible

105Box	on	Wheels

//	Runs	the	motors	with	arcade	steering

				void	OperatorControl(void)	{

								myRobot.SetSafetyEnabled(true);

								while	(IsOperatorControl())

								{

												myRobot.ArcadeDrive(stick);	//	drive	with	arcade	style	(use	right	stick)

								Wait(0.005);	//	wait	for	a	motor	update	time

				}

}

//	Runs	during	test	mode

				void	Test()	{

				}

};

START_ROBOT_CLASS(RobotDemo);

➠	The	Explanation
Breakdown	of	the	code	follows	as	so:

#include	“WPILib.h”

This	including	of	the	WPI	Library	is	the	inclusion	of	a	spellbook	for	almost	every	class
needed	for	the	robot:	motors,	pneumatics,	Axis	cameras,	etc.	NOTE:	There	will	still	be	much
time	spent	using	the	“WPILib	C++	Reference”,	but	the	use	of	the	basic	manual	reduces	most
of	the	time	spent	by	presenting	sample/proper	usage	so	the	learning	process	does	not	need
to	repeat	itself	and	time	can	be	best	allocated	elsewhere.

/*

This	is	a	demo	program	showing	the	use	of	the	RobotBase	class.	The	SampleRobot	class	is	the	base	of	a	robot	application	that	will	automatically	call	your

Autonomous	and	OperatorControl	methods	at	the	right	time	as	controlled	by	the	switches	on	the	driver	station	or	the	field	controls.

	*/

If	you’ve	commented	in	programming,	then	you	know	what	you	should	be	doing,	if	you	are
lazy	and	have	some	personal	belief	or	dogma	that,	“Tough	beans,	figure	out	my	giant
program,”	you	are	impeding	the	progress	of	your	subteam	and	you	are	absolutely	terrible.

FRC	Electrical	Bible

106Box	on	Wheels

However,	if	you’re	just	in	the	mood	and	have	started	a	program,	comment	what	needs	to	be
understood	because	you	never	know	when	you	might	be	gone	the	next	day	and	someone
else	has	to	run	your	program.

class	RobotDemo	:	public	SampleRobot

This	is	your	physical	robot,	RobotDemo	is	the	name	of	the	class,	SampleRobot	is	the	

{

				RobotDrive	myRobot;				//	robot	drive	system

				Joystick	stick;								//	only	joystick

Declaration	of	the	robots	parts,		RobotDrive		is	a	simplified	drive	system	class	that	declares
motors	for	you	and	has	preprogrammed	drive	functions;		Joystick		also	declared	last
because	it	is	a	part	of	the	robot,	but	how	else	are	you	going	to	control	it?	With	your	mind?	I
THINK	NOT!

public:

								RobotDemo(void):

								myRobot(1,	2),				//	these	must	be	initialized	in	the	same	order

								stick(1)										//	as	they	are	declared	above.

				{

								myRobot.SetExpiration(0.1),	//you	can	initialize	things	here	like	gyros	at	construction

				}

	RobotDemo		is	the	constructor	of	your	robot,	it	will	now	initialize	what	you	declared	previously
as	ports	in	the	sidecar	for	most	of	the	declared	objects,	with	the	exception	of	the	joystick.	As
noted,		RobotDemo		has	the	same	name	as	the	class	because	of	how	objects	work,	and	it	is
void,	but	you	don’t	have	to	put	void	as	in	C++	it	automatically	assumes	void.	The	pair	of
braces	after	you	instantiate	the	ports	of	your	controllers	allows	you	to	initialize/run
commands	(like	sensors)	at	the	very	beginning.

FRC	Electrical	Bible

107Box	on	Wheels

//	Drive	left	&	right	motors	for	2	seconds	then	stop

				void	Autonomous(void)	{

								myRobot.SetSafetyEnabled(false);

								myRobot.Drive(0.5,	0.5);				//	drive	forward	at	half	speed

								Wait(2);																//	for	2	seconds

								myRobot.Drive(0.0,	0.0);				//	stop	robot

				}

This	is	the		Autonomous		method	of	the		RobotDemo		class,	and	it	was	inherited	from
	SampleRobot	.	It	will	only	run	during	the	Autonomous	period	of	the	game.		SetSafetyEnabled	
is	to	protect	everyone	in	case	of	loss	of	communication	or	other	problems	when	set	to	true	in
the		()	.	Drive	sets	the	speed	of	the	motors	in	the	order	initialized	respectively,	from	a	value
of	(-1.0		to		1.0).	Wait	is	a	method	that	stops	the	program	from	reading	any	further	lines
for	the	time	specified	in	the		()		in	seconds.	To	stop	the	robot,	the	motors	after	being	set	to
move	must	be	set	back	to	zero.

//	Runs	the	motors	with	arcade	steering

				void	OperatorControl(void)	{

								myRobot.SetSafetyEnabled(true);

								while	(IsOperatorControl())	{

												myRobot.ArcadeDrive(stick);	//drive	with	arcade	style	(use	right	stick)

												Wait(0.005);				//	wait	for	a	motor	update	time

								}

				}

	OperatorControl		is	a	method	of	the		RobotDemo		class,	this	method	was	also	inherited	from
	SampleRobot	.	This	is	where	the	code	for	your	tele-op	or	driver	control	period	goes.
	SetSafetyEnabled		was	already	mentioned,	but	as	a	reminder,	it’s	for	the	safety	of	all	others
and	the	robot	in	case	of	communication	problems	with	the	robot.	The	while	loop	is	there	to
make	sure	that	you	are	always	in	control	during	the	period,	without	the	loop,	the	code	would
only	run	once	and	your	robot	would	then	become	a	stationery	box.		ArcadeDrive		is	the	type
of	drive	using	arcade	joystick,	the	robot	will	move	according	to	the	joystick	input.

//	Runs	during	test	mode

				void	Test()	{

				}

FRC	Electrical	Bible

108Box	on	Wheels

This	is	where	you	would	input	test	code	that	you	wouldn’t	put	into	either	Autonomous	or
Tele-op	without	being	sure	it	would	work	first	or	if	it	would	conflict	with	other	parts	of	the	code
inside	those	methods.

};

START_ROBOT_CLASS(RobotDemo);

	START_ROBOT_CLASS		sets	up	a	"user	class	factory",	which	is	a	function	that	returns	a	pointer
new	instance	of	your	robot	class.	It	also	creates	the	entry	point	function,
	FRC_UserProgram_StartupLibraryInit	.

FRC	Electrical	Bible

109Box	on	Wheels

Box	on	Wheels	Template	vs	Custom	Program
While	Box	on	Wheels	Template	is	already	made,	there	is	not	a	lot	of	room	to	edit	this	drive
code	unless	you	are	using	two	Logitech	Extreme	3D	Pro	USB	Joysticks.	If	you	search	in	the
WPILib	Reference	for	RobotDrive,	the	constructors	and	drive	methods	are	designed	for
something	like	the	above.	Also	your	choices	of	#	of	motors	for	drive	is	only	either	2	or	4.	If
you	wish	to	use	a	Logitech	F310	Gamepad,	you	are	better	off	writing	your	own	drive	code.
When	I	mean	custom,	delete	the	unnecessary	parts	of	the	template	that	would	be	not
conducive	to	the	word	custom.	Below	is	barebones	code	that	you	may	modify	to	meet	your
own	desires.

➠	The	Code

FRC	Electrical	Bible

110Box	on	Wheels	Template	vs	Custom	Program

#include	"WPILib.h”

//Last	modified:	January	25,	2014	by:	Alan

class	RobotDemo	:	public	SampleRobot	{

				Joystick	stick;

public:

				RobotDemo(void):

				stick(1)	{

				}

				//	Insert	your	own	comment

				void	Autonomous(void)

				{

				}

				//	Insert	your	own	comment

				void	OperatorControl(void)	{

								while	(IsOperatorControl())	{

												Wait(0.005);				//	wait	for	a	motor	update	time

								}

				}

				//	Insert	your	own	comment

				void	Test()	{

				}

};

START_ROBOT_CLASS(RobotDemo);

➠	The	Explanation
Here’s	a	pancake	sandwich	with	sprinkles.

#include	"WPILib.h"

This	is	your	spellbook.	Live	it,	breathe	it.

class	RobotDemo	:	public	SampleRobot

The		RobotDemo		class	+		SampleRobot		from	the	template	gives	you	the	inherited	methods	to
use	in	the	Driver	Station,	will	need	it

FRC	Electrical	Bible

111Box	on	Wheels	Template	vs	Custom	Program

Joystick	stick;

You	will	always	need	a	joystick,	again,	unless	you	can	control	your	robot	with	your	mind,	or	it
is	completely	autonomous,	make	the	joystick.

public:

				RobotDemo(void):

								stick(1)

				{

				}

Instantiate	the	stick,	you	can’t	use	it	if	you	don’t	instantiate	it.	The	braces	have	to	be	there,
part	of	the	compiling.	When	you	start	adding	in	motors	and	sensors,	their
expirations/initialization	will	be	set	in	those	braces.

				void	Autonomous(void)	{

				}

Still	need	autonomous	section,	part	of	the	inheritance.	If	you	use	it	or	not	is	up	to	that	year’s
game,	but	you	still	need	this!

				void	OperatorControl(void)	{

								while	(IsOperatorControl())	{

												Wait(0.005);				//	wait	for	a	motor	update	time

								}

				}

This	is	where	you	write	the	god	code,	where	you	let	your	driver	feel	like	a	king	moving	the
robot...with	your	code	:D	Make	sure	the	code	that	will	let	the	driver	execute	commands	is	in
the	while	loop,	wouldn’t	it	suck	that	they	can	only	do	it	once	because	it	was	not	in	the	loop?
Before	the	loop	is	when	you	can	instantiate	specific	things	such	as	the	resolution	of	an	axis
camera.

				void	Test()	{

				}

Testing	space	for	small	portions	of	questionable	code.	Also	part	of	inheritance,	required.

FRC	Electrical	Bible

112Box	on	Wheels	Template	vs	Custom	Program

};

START_ROBOT_CLASS(RobotDemo);

Closes	brace	from	the	beginning	of	the	class.		START_ROBOT_CLASS(RobotDemo);		notice	how
	RobotDemo		is	in	the	parameter,	isn’t	that	the	class?	So	this	is	also	important	for	it	runs	the
class.

FRC	Electrical	Bible

113Box	on	Wheels	Template	vs	Custom	Program

Custom	Program	(Tank	Drive)
An	example	of	where	the	driver	uses	the	Logitech	F310	Gamepad,	but	because	of	the	way
the	RobotDrive	class	is	made,	it	is	preferable	to	make	one’s	own	code.

➠	The	Code

#include	"WPILib.h"				//	WPILibrary.h

#include	"Math.h"				//	Math.h	required	for	fabs	function

//Last	modified:	January	30,	2014	by:	Alan

class	RobotDemo	:	public	SampleRobot	{

				Talon	frontLeft,	frontRight,	backLeft,	backRight;	//Talon	Motor	Controllers

				Joystick	logitech;					//	Logitech	F310	Gamepad/Controller

public:

				RobotDemo(void):

								frontLeft(1),

								frontRight(2),

								backLeft(3),

								backRight(4),

								logitech(1)

/*

	*	Set	motor	expiration	to	prevent	unwarranted	movement	if	connection	lost	or

	*	disabled

	*/

				{

								frontLeft.SetExpiration(0.1),

								frontRight.SetExpiration(0.1),

								backLeft.SetExpiration(0.1),

								backRight.SetExpiration(0.1);

				}

				void	Autonomous(void)	{

				}

				/**

					*	Runs	the	motors	with	tank	steering

					*/

FRC	Electrical	Bible

114Custom	Program	(Tank	Drive)

				void	OperatorControl(void)	{

								while	(IsOperatorControl())	{

												if(fabs(logitech.GetRawAxis(2))	>	0.2)	{

																/*left	joystick,	forward	&	back*/				

																frontLeft.Set(logitech.GetRawAxis(2)	*	-.65);

																backLeft.Set(logitech.GetRawAxis(2)	*	-.65);

												}

												else	{

																frontLeft.Set(0);

																backLeft.Set(0);

												}

												if(fabs(logitech.GetRawAxis(4))	>	0.2)	{

																/*right	joystick,	forward	&	back*/	

																frontRight.Set(logitech.GetRawAxis(4)	*	.65);

																backRight.Set(logitech.GetRawAxis(4)	*	.65);

												}

												else	{

																frontRight.Set(0);

																backRight.Set(0);

												}

																Wait(0.005);				//	wait	0.005	seconds	before	repeating	loop

								}

				}

				/**

					*	Runs	during	test	mode

					*/

				void	Test()	{

								while(IsTest())	{

								}

				}

};

START_ROBOT_CLASS(RobotDemo);

➠	The	Explanation

#include	"WPILib.h"				//	WPILibrary.h

#include	"Math.h"				//	Math.h	required	for	fabs	function

FRC	Electrical	Bible

115Custom	Program	(Tank	Drive)

	WPILib.h		is	always	our	spellbook.		Math.h		is	a	different	library	that	is	generally	used	in	C++
for	math	functions.	As	stated	in	the	comment,	it	is	used	for	the		fabs		(float	absolute	value)
function	that	appears	in	the	tank	drive	portion	of	this	code.

class	RobotDemo	:	public	SampleRobot

{

				Talon	frontLeft,	frontRight,	backLeft,	backRight;	//Talon	Motor	Controllers

				Joystick	logitech;					//	Logitech	F310	Gamepad/Controller

	RobotDemo		class	with	inherited	methods	from		SampleRobot		makes	templating	easier.	The
talons	are	one	of	several	motor	controllers	explained	in	an	earlier	section	of	this	manual.
	RobotDrive		in	the	original	template	declares	them	in	the	background,	but	then	you	are
limited	to	it’s	drive	methods.	This	custom	program	uses	a	logitech	gamepad	which	is	one
joystick	object.	If	you	look	in	the	WPILib	reference,	it	will	show	that	to	use	the	tank	drive
method	of	the		RobotDrive	,	you	need	two	joysticks.

public:

				RobotDemo(void):

								frontLeft(1),

								frontRight(2),

								backLeft(3),

								backRight(4),

								logitech(1)

//	Set	motor	expiration	to	prevent	unwarranted	movement	if	connection	lost	or	disabled

				{

								frontLeft.SetExpiration(0.1),

								frontRight.SetExpiration(0.1),

								backLeft.SetExpiration(0.1),

								backRight.SetExpiration(0.1);

				}

Now	in	the	constructor,	the	motor	controllers	are	instantiated	in	the	ports	of	the	digital
sidecar	corresponding	to	the	number	in	the	parentheses.	The	joystick	is	instantiated	using
the	USB	port.	As	mentioned	in	the	comment,	inside	the	other	braces,	there	are
	SetExpiration	s	to	prevent	continued	movement	in	event	of	disablement	or	lost	connection.
It	does	this	by	shutting	down	power	to	the	object	that	has	expired;	now	as	long	as	you’re
connected,	the	motors	are	“fed”	and	the	expirations	refresh.

FRC	Electrical	Bible

116Custom	Program	(Tank	Drive)

				/**

					*	Insert	own	comment

					*/

				void	Autonomous(void)	{

				}

Autonomous	code	goes	here.	However	this	custom	program	is	to	show	tank	drive	not	full
autopilot.

				/**

					*	Runs	the	motors	with	tank	steering

					*/

				void	OperatorControl(void)	{

								while	(IsOperatorControl())	{

												if(fabs(logitech.GetRawAxis(2))	>	0.2)	{

																/*left	joystick,	forward	&	back*/				

																frontLeft.Set(logitech.GetRawAxis(2)	*	-.65);

																backLeft.Set(logitech.GetRawAxis(2)	*	-.65);

												}

												else	{

																frontLeft.Set(0);

																backLeft.Set(0);

												}

												if(fabs(logitech.GetRawAxis(4))	>	0.2)	{

																/*right	joystick,	forward	&	back*/					

																frontRight.Set(logitech.GetRawAxis(4)	*	.65);

																backRight.Set(logitech.GetRawAxis(4)	*	.65);

												}

												else	{

																frontRight.Set(0);

																backRight.Set(0);

												}

												Wait(0.005);				//	wait	for	a	motor	update	time

								}

				}

This	here	is	the	juicy	part,	this	is	tank	drive.	For	those	who	do	not	know	tank	drive,	one
joystick	controls	one	side	of	the	drive,	so	when	one	stick	is	pushed,	only	one	side	moves
and	the	other	joystick	controls	the	other	respective	side.	This	is	where	the	fabs	function	is

FRC	Electrical	Bible

117Custom	Program	(Tank	Drive)

used	to	shorten	coding	lines.	Normally	there	would	have	to	be	two	conditions	in	those	ifs	for
tank	drive	to	work;	if	the	joystick	is	greater	than	a	threshold	OR	if	the	joystick	is	below
negative	threshold.	It	would	look	like		joystick.GetRawAxis(2)	>	0.2	||
joystick.GetRawAxis(2)	<	-0.2	.	Compared	to	what	is	in	there,	it	is	much	easier	to	code,	but
less	understandable.	Reasoning	is	when	you	tilt	the	joystick	back	it	is	negative,	but	it	does
not	pass	>		0.2	.	Use		fabs		or	absolute	value(for	floats,	just	abs	for	ints),	less	coding.

				/**

					*	Runs	during	test	mode

					*/

				void	Test()	{

								while(IsTest())	{

								}

				}

};

START_ROBOT_CLASS(RobotDemo);

Closes	brace	from	the	beginning	of	the	class.		START_ROBOT_CLASS(RobotDemo);		notice	how
	RobotDemo		is	in	the	parameter,	isn’t	that	the	class?	So	this	is	also	important	for	it	runs	the
class.

FRC	Electrical	Bible

118Custom	Program	(Tank	Drive)

Custom	Program	(Mecanum	Drive)

➠	Introduction	&	Wheel	Configuration

The	Mecanum	Drive	allows	the	robot	to	move	forward,	backward,	and	strafe.	This	is	possible
due	to	the	nature	of	the	wheels,	which	slip	because	of	the	rollers	on	them.	They	will	naturally
travel	in	a	45	degree	motion	in	the	direction	that	the	entire	wheel	is	rotating.	When	working
with	mecanum	wheels,	it	is	important	to	consider	the	weight	distribution	of	the	robot	frame
because	mecanum	wheels	are	designed	for	robots	with	an	even	weight	distribution.	An
uneven	weight	distribution	will	cause	wheels	supporting	more	weight	to	have	more	traction
than	the	wheels	supporting	less	weight.	This	difference	in	traction	will	modify	the	effective
rotation	of	each	wheel,	and	the	effect	of	the	mecanum	drive	is	lost.

Left	configuration

Rotating	Forwards:	motion	45	degrees	north	of	east
Rotating	Backwards:	motion	45	degrees	south	of	west
Used	by:	Wheel	1,	front	left,	and	Wheel	4,	back	right.

Right	Configuration

Rotating	Forwards:	motion	45	degrees	north	of	west
Rotating	Backwards:	motion	45	degrees	south	of	east

FRC	Electrical	Bible

119Custom	Program	(Mecanum	Drive)

Used	by:	Wheel	2,	front	right,	and	Wheel	3,	back	left.

➠	Movement	Configuration

Driving	Forward

Wheels	1,	2,	3,	and	4	are	rotating	forward	to	allow	the	drive	frame	to	drive	forward.

Driving	Backward

Wheels	1,	2,	3,	and	4	are	rotating	backward	to	allow	the	drive	frame	to	drive	backward.

FRC	Electrical	Bible

120Custom	Program	(Mecanum	Drive)

Strafing	Left

Wheels	2	and	3	are	rotating	forward,	Wheels	1	and	4	are	rotating	backward	to	allow	the
drive	frame	to	strafe	toward	the	left.

FRC	Electrical	Bible

121Custom	Program	(Mecanum	Drive)

Strafing	Right

Wheels	1	and	4	are	rotating	forward,	Wheels	2	and	3	are	rotating	backward	to	allow	the
drive	frame	to	strafe	toward	the	right.

FRC	Electrical	Bible

122Custom	Program	(Mecanum	Drive)

Turning	Clockwise

FRC	Electrical	Bible

123Custom	Program	(Mecanum	Drive)

Wheels	1	and	3	are	rotating	forward,	Wheel	2	and	4	are	rotating	backward	to	allow	the	drive
frame	to	rotate	clockwise	about	its	center	

Turning	Counter-Clockwise

Wheels	2	and	4	are	rotating	forward,	Wheels	1	and	3	are	rotating	backward	to	allow	the
drive	frame	to	rotate	counter-clockwise	about	its	center

FRC	Electrical	Bible

124Custom	Program	(Mecanum	Drive)

➠	Sample	Testing	Code

#include	"WPILib.h"

#include	“Math.h”

class	RobotDemo	:	public	SampleRobot	{

				Victor	leftFront;	//	Initializing	motor	1;	front-left	motor

				Victor	leftBack;	//	Initializing	motor	3;	back-left	motor

				Victor	rightFront;//	Initializing	motor	2;	front-right	motor

				Victor	rightBack;	//	Initializing	motor	4;	back-right	motor

				Joystick	logitech;	//	Logitech	Gamepad	Controller

public:

				RobotDemo():

								leftFront(1),			//	leftFront	motor	uses	PWM	port	1

								leftBack(2),	//	leftBack	motor	uses	PWM	port	2

								rightFront(3),	//	rightBack	motor	uses	PWM	port	3

								rightBack(4),	//	rightBack	motor	uses	PWM	port	4

								logitech(1)	//	Logitech	Game	Controller	with	Driverstation	port	1

FRC	Electrical	Bible

125Custom	Program	(Mecanum	Drive)

				{

				}

				void	OperatorControl()	{

										int	leftFrontPolarity	=	1;	//	These	variables	flip	the	sign	value	of

										int	leftBackPolarity	=	1;	//	the	motors	in	the	situation	that	they	are

										int	rightFrontPolarity	=	-1;	//	flipped

										int	rightBackPolarity	=	-1;

										while	(IsOperatorControl())	{

												float	x	=	0;	//	x-axis	motion-right	(+),	left	(-)

												float	y	=	0;	//	y-axis	motion-forward	(+),	backward	(-)

												float	z	=	0;	//	z-axis	motion-clockwise	(+),	counterclockwise	(-)

												if	(fabs(stickOne.GetRawAxis(1))	>	.2)

																z	=	stickOne.GetRawAxis(1);	//	z-axis	threshold

												if	(fabs(stickOne.GetRawAxis(2))	>	.2)

																y	=	-(stickOne.GetRawAxis(2));	//	y-axis	threshold

												if	(fabs(stickTwo.GetRawAxis(1))	>	.2)

																x	=	stickTwo.GetRawAxis(1);	//	x-axis	threshold

												//	y-axis	motion

												if	(fabs(y)	>	fabs(x)	&&	fabs(y)	>	fabs(z))	//Activates	if	y	is	largest	{

																leftFront.Set(y	*	leftFrontPolarity);

																rightFront.Set(y	*	rightFrontPolarity);

																leftBack.Set(y	*	leftBackPolarity);

																rightBack.Set(y	*	rightBackPolarity);

												}

												//	x-axis	motion

												if	(fabs(x)	>	fabs(y)	&&	fabs(x)	>	fabs(z))	//Activates	if	x	is	largest	{

																leftFront.Set(x	*	leftFrontPolarity);

																rightFront.Set(x	*	rightFrontPolarity	*	-1);

																leftBack.Set(x	*	leftBackPolarity	*	-1);

																rightBack.Set(x	*	rightBackPolarity);

												}

												//	z-axis	motion

												else	if	(fabs(z)	>	fabs(y)	&&	fabs(z)	>	fabs(x))	{

																leftFront.Set(z	*	leftFrontPolarity);

																rightFront.Set(z	*	rightFrontPolarity	*	-1);

																			leftBack.Set(z	*	leftBackPolarity);

																rightBack.Set(z	*	rightBackPolarity	*	-1);

FRC	Electrical	Bible

126Custom	Program	(Mecanum	Drive)

												}

												//	Otherwise	sticks	are	not	pushed

												else	{

																leftFront.Set(0);

																leftBack.Set(0);

																rightFront.Set(0);

																rightBack.Set(0);

												}

												Wait(0.005);

								}

				}

};

START_ROBOT_CLASS(RobotDemo);

➠	The	Explanation
Breakdown	of	the	code	follows	as	so:

#include	"WPILib.h"

#include	"Math.h"

class	RobotDemo	:	public	SimpleRobot

{

				Victor	leftFront;	//	Initializing	motor	1;	front-left	motor

				Victor	leftBack;	//	Initializing	motor	3;	back-left	motor

				Victor	rightFront;//	Initializing	motor	2;	front-right	motor

				Victor	rightBack;	//	Initializing	motor	4;	back-right	motor

				Joystick	logitech;	//	Logitech	Gamepad	Controller

Here	we	instantiate	the	4	motor	controllers	we	are	using	to	manipulate	the	4	mecanum
wheels	on	the	robot	under	the		Victor		class	(here	we	used	Victor	motor	controllers).	We
also	instantiated	our	Logitech	Gamepad	Controller	under	the		Joystick		class.

FRC	Electrical	Bible

127Custom	Program	(Mecanum	Drive)

public:

				RobotDemo():

								leftFront(1),			//	leftFront	motor	uses	PWM	port	1

								leftBack(2),	//	leftBack	motor	uses	PWM	port	2

								rightFront(3),	//	rightBack	motor	uses	PWM	port	3

								rightBack(4),	//	rightBack	motor	uses	PWM	port	4

								logitech(1)	//	Logitech	Game	Controller	with	Driverstation	port	1

				{

				}

We	further	define	our	constructors	by	associating	each	piece	of	hardware	to	their	respective
ports.	The		Victor		Class,	which	is	a	category	of	motor	controllers,	utilize	PWM	ports	while
the		Joystick		Class	utilized	for	the	Logitech	Gamepad	Controller	utilizes	the	driver	station
(USB)	ports

				void	OperatorControl()

				{

								DriverStationLCD	*screen	=	DriverStationLCD::GetInstance();

										int	leftFrontPolarity	=	1;	//	These	variables	flip	the	sign	value	of

										int	leftBackPolarity	=	1;	//	the	motors	in	the	situation	that	they	are

										int	rightFrontPolarity	=	-1;	//	flipped

										int	rightBackPolarity	=	-1;

These	variables	are	in	place	to	control	the	polarity	of	the	motors	(whether	they	rotate
forwards	or	backwards	when	pushing	the	left	and	right	sticks	in	a	certain	direction).	This
makes	it	easier	to	fix	the	code	in	the	event	of	a	motor	being	reversed.

										while	(IsOperatorControl())	{

													float	x	=	0;	//	x-axis	motion-right	(+),	left	(-)

													float	y	=	0;	//	y-axis	motion-forward	(+),	backward	(-)

													float	z	=	0;	//	z-axis	motion-clockwise	(+),	counterclockwise	(-)

This	splits	the	axes	of	the	motion	so	that	they	can	be	assigned	based	on	how	the
thumbsticks	are	pushed.	The	pushing	the	left	thumbstick	on	it’s	y-axis	will	give	a	y-value	(+	
=	forward,		-		=	backward),	pushing	the	left	stick	on	it’s	x-axis	gives	a	z-value	(+		=
clockwise,		-		=	backward),	and	pushing	the	right	stick	on	it’s	x-axis	give	a	x-value	(+		=
right,		-		=	left).

FRC	Electrical	Bible

128Custom	Program	(Mecanum	Drive)

												if	(fabs(stickOne.GetRawAxis(1))	>	.2)

																z	=	stickOne.GetRawAxis(1);	//	z-axis	threshold

												if	(fabs(stickOne.GetRawAxis(2))	>	.2)

																y	=	-(stickOne.GetRawAxis(2));	//	y-axis	threshold

												if	(fabs(stickTwo.GetRawAxis(1))	>	.2)

																x	=	stickTwo.GetRawAxis(1);	//	x-axis	threshold

This	section	assigns	a	value	to	the	axes	based	on	the	orientation	of	the	thumbsticks.	A
threshold	is	placed	so	that	tiny	accidental	movements	do	not	cause	the	robot	to	drift.

												//	y-axis	motion

												if	(fabs(y)	>	fabs(x)	&&	fabs(y)	>	fabs(z))	//Activates	if	y	is	largest	{

																leftFront.Set(y	*	leftFrontPolarity);

																rightFront.Set(y	*	rightFrontPolarity);

																leftBack.Set(y	*	leftBackPolarity);

																rightBack.Set(y	*	rightBackPolarity);

												}

If	the	left	stick	is	pushed	more	on	it’s	y-axis	(forward	/	backward)	than	it	or	the	right	stick	is
pushed	on	their	x-axis,	then	the	robot	will	move	forward	or	backwards	depending	on	the
direction	of	the	thumbstick.	Pushing	forward	will	make	all	wheels	rotate	forward	and	pushing
backwards	makes	all	wheels	rotate	backward.	Also,	the	speed	of	the	motors	depends	on
how	much	the	left	thumbstick	is	pushed	along	the	y-axis.

													//	x-axis	motion

												if	(fabs(x)	>	fabs(y)	&&	fabs(x)	>	fabs(z))

													//Activates	if	x	is	largest	{

																leftFront.Set(x	*	leftFrontPolarity);

																rightFront.Set(x	*	rightFrontPolarity	*	-1);

																leftBack.Set(x	*	leftBackPolarity	*	-1);

																rightBack.Set(x	*	rightBackPolarity);

												}

If	the	right	stick’s	x-axis	magnitude	is	greater	than	any	of	the	left	stick’s	axes,	then	the	robot
will	strafe	either	right	or	left.	Pushing	the	thumbstick	to	the	right	makes	the	left	front	and	right
back	motors	rotate	forward	while	the	other	two	reverse	(used	the	vector	diagram	to

FRC	Electrical	Bible

129Custom	Program	(Mecanum	Drive)

determine	direction).	Pushing	the	thumbstick	to	the	left	makes	the	opposite	happen,	with	the
right	front	and	left	back	rotating	forward	while	the	left	front	and	right	back	reverse.	Again,	the
speed	of	the	motors	depends	on	how	large	the	magnitude	of	the	right	thumbstick’s	x-axis	is.

												//	z-axis	motion

												else	if	(fabs(z)	>	fabs(y)	&&	fabs(z)	>	fabs(x))	{

																leftFront.Set(z	*	leftFrontPolarity);

																rightFront.Set(z	*	rightFrontPolarity	*	-1);

																			leftBack.Set(z	*	leftBackPolarity);

																rightBack.Set(z	*	rightBackPolarity	*	-1);

												}

If	the	magnitude	of	the	left	stick’s	x-axis	is	greater	than	it’s	own	y-axis	and	the	right
thumbsticks	x-axis,	then	the	robot	will	rotate.	If	the	left	stick	is	pushed	to	the	right,	the	left
wheels	will	rotate	forward	and	the	right	wheels	will	rotate	backwards,	making	it	turn
clockwise,	much	like	tank	drive.	The	opposite	happens	when	you	push	the	stick	to	the	left.

													else	{

																				leftFront.Set(0);

																				leftBack.Set(0);

																				rightFront.Set(0);

																				rightBack.Set(0);

													}

This	sets	all	the	motors	to		0		when	the	joysticks	are	not	pushed	in	an	assigned	direction	or
are	not	pushed	past	the	threshold

Alternate	Code	(put	this	in	place	of	all	of	the	if	else	statements)

leftFront.Set(x-y-z);

leftBack.Set(-x-y-z);

rightFront.Set(x+y+z);

rightBack.Set(-x+y+z);

This	code	is	used	as	a	simplification	of	the	one	posted	earlier.	However,	there	is	a
fundamental	difference	in	how	these	two	operate.	In	the	original	code,	you	can	only	move	in
specific	directions,	like	forward,	backwards,	right,	left,	and	rotate,	whereas	in	this	version	you
can	move	in	any	combination	of	the	three	axes.	This	is	achieved	by	bypassing	if	statements
and	just	using	addition	and	subtraction.	This	way	also	allows	you	to	bypass	the	issue	of

FRC	Electrical	Bible

130Custom	Program	(Mecanum	Drive)

making	a	specific	variable	for	polarity,	as	you	can	just	change	the		+		or		-		for	the	specific
motor.	In	this	situation,	the	left	motors	were	reversed,	so	it	was	necessary	to	change		+y		to
	-y		and		+z		to		-z		as	it	is	now.	You	also	have	to	switch	the	sign	of	the		x		variable.	If	the
left	motors	were	not	reversed,	the	code	would	be		leftFront.Set(-x+y+z)		and
	leftBack.Set(x+y+z)	.	However,	there	is	an	issue	that	exists	within	this	code	as	it	is	possible
for	the	set	value	for	each	motor	to	exceed	1	if	you	were	to	rotate	while	moving	in	another
direction.

➠	Tested	and	Modified	Code

//	This	is	temporary	code	that	will	be	replaced	in	the	bible	upon	final	code	completion

#include	"WPILib.h"

#include	"Math.h"

class	RobotDemo	:	public	SimpleRobot	{

				Victor	leftFront;	//	Initializing	motor	1;	front-left	motor

				Victor	leftBack;	//	Initializing	motor	3;	back-left	motor

				Victor	rightFront;	//	Initializing	motor	2;	front-right	motor

				Victor	rightBack;	//	Initializing	motor	4;	back-right	motor

				Joystick	stickOne;	//	Logitech	Gamepad	Controller

				Joystick	stickTwo;	//	Logitech	Gamepad	Controller

public:

				RobotDemo():

								leftFront(1),			//	leftFront	motor	uses	PWM	port	1

								leftBack(2),	//	leftBack	motor	uses	PWM	port	2

								rightFront(3),	//	rightBack	motor	uses	PWM	port	3

								rightBack(4),	//	rightBack	motor	uses	PWM	port	4

								stickOne(1),	//	Logitech	Game	Controller	with	Driverstation	port	1

						stickTwo(2)	//	Joystick	with	driverstation	port	2

				{

				}

				void	OperatorControl()	{

								DriverStationLCD	*screen	=	DriverStationLCD::GetInstance();

								int	leftFrontPolarity	=	1;	//	These	variables	flip	the	sign	value	of

								int	leftBackPolarity	=	1;	//	the	motors	in	the	situation	that	they	are

								int	rightFrontPolarity	=	-1;	//	flipped

								int	rightBackPolarity	=	-1;

								float	x	=	0;	//	x-axis	motion-right	(+),	left	(-)

FRC	Electrical	Bible

131Custom	Program	(Mecanum	Drive)

								float	y	=	0;	//	y-axis	motion-forward	(+),	backward	(-)

								float	z	=	0;	//	z-axis	motion-clockwise	(+),	counterclockwise	(-)

								while	(IsOperatorControl())	{

												if	(fabs(stickOne.GetRawAxis(1))	>	.2)

																z	=	stickOne.GetRawAxis(1);	//	z-axis	threshold

												if	(fabs(stickOne.GetRawAxis(2))	>	.2)

																y	=	-(stickOne.GetRawAxis(2));	//	y-axis	threshold

												if	(fabs(stickTwo.GetRawAxis(1))	>	.2)

																x	=	stickTwo.GetRawAxis(1);	//	x-axis	threshold

												//	y-axis	motion

												//	Activates	if	y	is	largest

												if	(fabs(y)	>	fabs(x)	&&	fabs(y)	>	fabs(z))	{

																leftFront.Set(y	*	leftFrontPolarity);

																rightFront.Set(y	*	rightFrontPolarity);

																								leftBack.Set(y	*	leftBackPolarity);

																								rightBack.Set(y	*	rightBackPolarity);

												}

												//	x-axis	motion

												//Activates	when	x	is	largest

												else	if	(fabs(x)	>	fabs(y)	&&	fabs(x)	>	fabs(z))	{

																if(x	>	0)	{

																	//Executes	if	x	is	greater	than	deadband	of	0.5

																				if(fabs(x)	>=	0.5)	{

																								leftFront.Set(x	*	leftFrontPolarity	*	1.1);

																								rightFront.Set(x	*	rightFrontPolarity	*	-0.95

																								leftBack.Set(x	*	leftBackPolarity	*	-1.1);

																								rightBack.Set(x	*	rightBackPolarity);

																				}

																				else	if(fabs(x)	>	0.35)	{

																				leftFront.Set(x	*	leftFrontPolarity	*	0.9);

																				rightFront.Set(x	*	rightFrontPolarity	*-0.9);

																				leftBack.Set(x	*	leftBackPolarity	*	-1.1);

																				rightBack.Set(x	*	rightBackPolarity);

																				}

																}

																else	if(x	<	0)	{

																				if(fabs(x)	>=	0.5)	{

																								leftFront.Set(x	*	leftFrontPolarity	*	1.05);

																								rightFront.Set(x	*	rightFrontPolarity	*	-1);

FRC	Electrical	Bible

132Custom	Program	(Mecanum	Drive)

																								leftBack.Set(x	*	leftBackPolarity	*	-1);

																								rightBack.Set(x	*	rightBackPolarity);

																				}

																				else	if(fabs(x)	>	0.35)	{

																								leftFront.Set(x	*	leftFrontPolarity	*	1.1);

																								rightFront.Set(x	*	rightFrontPolarity	*	-1);

																								leftBack.Set(x	*	leftBackPolarity	*	-1.1);

																								rightBack.Set(x	*	rightBackPolarity);

																				}

																}

												}

												//	z-axis	motion

												else	if	(fabs(z)	>	fabs(y)	&&	fabs(z)	>	fabs(x))	{

																leftFront.Set(z	*	leftFrontPolarity);

																rightFront.Set(z	*	rightFrontPolarity	*	-1);

															leftBack.Set(z	*	leftBackPolarity);

																rightBack.Set(z	*	rightBackPolarity	*	-1);

												}

												//turn	left	when	pressing	5	

												else	if(stickOne.GetRawButton(5))	{

																leftFront.Set(0.5);

																rightFront.Set(0.3);

																leftBack.Set(0.3);

																rightBack.Set(0.3);

												}

												//turn	right	when	pressing	4

												else	if(stickOne.GetRawButton(4))	{

																leftFront.Set(-0.3);

																rightFront.Set(-0.5);

																leftBack.Set(-0.3);

																rightBack.Set(-0.5);

												}

												//	Otherwise	sticks	are	not	pushed

												else	{

																leftFront.Set(0);

																leftBack.Set(0);

																rightFront.Set(0);

																rightBack.Set(0);

												}

												x	=	0;	//	x-axis	motion-right	(+),	left	(-)

FRC	Electrical	Bible

133Custom	Program	(Mecanum	Drive)

												y	=	0;	//	y-axis	motion-forward	(+),	backward	(-)

												z	=	0;	//	z-axis	motion-clockwise	(+),	counterclockwise	(-)

												screen	->	PrintfLine(DriverStationLCD::kUser_Line1,"X:	%f"

												screen	->	PrintfLine(DriverStationLCD::kUser_Line2,"Y:	%f"

												screen	->	PrintfLine(DriverStationLCD::kUser_Line3,"Rotation:	%f"

												screen	->	UpdateLCD();

												Wait(0.1);

									}

					}

				void	Test()	{

								while	(IsTest())	{

												//	Forward	polarity	test

												if	(stickOne.GetRawButton(6))

																leftFront.Set(.3);

												else	if	(stickOne.GetRawButton(7))

																leftBack.Set(.3);

												else	if	(stickOne.GetRawButton(11))

																rightFront.Set(-.3);

												else	if	(stickOne.GetRawButton(10))

																rightBack.Set(-.3);

												else	{

																leftFront.Set(0);

																leftBack.Set(0);

																rightFront.Set(0);

																rightBack.Set(0);

												}

								}

				}

};

START_ROBOT_CLASS(RobotDemo);

➠	The	Explanation
Breakdown	of	the	code	follows	as	so:

FRC	Electrical	Bible

134Custom	Program	(Mecanum	Drive)

#include	"WPILib.h"

class	RobotDemo	:	public	SimpleRobot	{

				Victor	leftFront;	//	Initializing	motor	1;	front-left	motor

				Victor	leftBack;	//	Initializing	motor	3;	back-left	motor

				Victor	rightFront;//	Initializing	motor	2;	front-right	motor

				Victor	rightBack;	//	Initializing	motor	4;	back-right	motor

				Joystick	stickOne;	//	Logitech	Gamepad	Controller

				Joystick	stickOne;	//	Logitech	Gamepad	Controller

Here	we	instantiate	the	four	motor	controllers	we	are	using	to	manipulate	the	4	mecanum
wheels	on	the	robot	under	the		Victor		class	(here	we	used	Victor	motor	controllers).	We
also	instantiated	our	two	joysticks	that	will	be	controlling	the	motion	of	the	robots

public:

				RobotDemo():

								leftFront(1),			//	leftFront	motor	uses	PWM	port	1

								leftBack(2),	//	leftBack	motor	uses	PWM	port	2

								rightFront(3),	//	rightBack	motor	uses	PWM	port	3

								rightBack(4),	//	rightBack	motor	uses	PWM	port	4

								stickOne(1)	//	Logitech	attack	3	with	Driverstation	port	1

								stickTwo(2)	//	Logitech	attack	3	with	Driverstation	port	2

				{

				}

Here,	we	further	define	our	constructors	by	associating	each	piece	of	hardware	to	their
respective	ports.	The		Victor		Class,	which	is	a	category	of	motor	controllers,	utilize	PWM
ports	while	the	Joystick	Class	utilized	for	the	Logitech	Attack	3	utilizes	the	driver-station
ports.

FRC	Electrical	Bible

135Custom	Program	(Mecanum	Drive)

				void	OperatorControl()	{

								DriverStationLCD	*screen	=	DriverStationLCD::GetInstance();

								int	leftFrontPolarity	=	1;	//	These	variables	flip	the	sign	value	of

								int	leftBackPolarity	=	1;	//	the	motors	in	the	situation	that	they	are

								int	rightFrontPolarity	=	-1;	//	flipped

								int	rightBackPolarity	=	-1;

								float	x	=	0;	//	x-axis	motion-right	(+),	left	(-)

								float	y	=	0;	//	y-axis	motion-forward	(+),	backward	(-)

								float	z	=	0;	//	z-axis	motion-clockwise	(+),	counterclockwise	(-)

The	top	half	of	this	section	is	meant	to	be	in	preparation	for	the	situation	where	one	or	more
wheels	need	to	have	their	polarity	(going	forwards	or	backwards)	flipped.	The	bottom	half	is
meant	to	instantiate	and	construct	the	variables	that	will	be	representing	our	various	axes	of
motion.	These	will	be	used	to	control	the	voltage	sent	to	each	individual	motor.

while	(IsOperatorControl())	{

								if	(fabs(stickOne.GetRawAxis(1))	>	.2)

												z	=	stickOne.GetRawAxis(1);	//	z-axis	threshold

								if	(fabs(stickOne.GetRawAxis(2))	>	.2)

												y	=	-(stickOne.GetRawAxis(2));	//	y-axis	threshold

								if	(fabs(stickTwo.GetRawAxis(1))	>	.2)

												x	=	stickTwo.GetRawAxis(1);	//	x-axis	threshold

This	section	serves	two	main	purposes.	The	first	one	is	setting	a	threshold	for	all	axes	of
motion.	The	joysticks	must	be	pushed	past	a	value	of	.2	in	order	for	its	value	to	be
considered	valid.	This	is	meant	to	prevent	the	robot	from	drifting	due	to	the	joystick	not
perfectly	resting	at	0.	The	second	function	is	to	assign	each	axis	of	motion	to	a	joystick
direction.	In	our	scenario,	we	preferred	to	make	pushing		stickOne		left	and	right	rotate	the
vehicle	counter	clockwise	and	clockwise	respectively.	Pushing		stickOne		forwards	and
backwards	correlates	to	forwards	and	backwards	motion.	Pushing		stickTwo		to	the	right	and
left	correlates	to	strafing	right	and	left.

FRC	Electrical	Bible

136Custom	Program	(Mecanum	Drive)

								//y-axis	motion

								//Activates	if	y	is	largest

								if	(fabs(y)	>	fabs(x)	&&	fabs(y)	>	fabs(z))	{

												leftFront.Set(y	*	leftFrontPolarity);

												rightFront.Set(y	*	rightFrontPolarity);

												leftBack.Set(y	*	leftBackPolarity);

												rightBack.Set(y	*	rightBackPolarity);

								}

The	first	line	is	dedicated	to	determining	if	the	y-component	(front	and	back)	of		stickOne	’s
position	is	greater	in	magnitude	than	its	z-component	(left	and	right)	and		stickTwo	’s	x-
component	(left	and	right).	This	is	meant	to	make	the	robot	only	move	in	one	direction	at	a
time.	The	rest	of	the	block	is	dedicated	to	making	the	robot	move	forward	and	backwards.
Since	all	wheels	rotate	in	the	same	direction,	nothing	needs	to	be	flipped.

								//	x-axis	motion

								//	Activates	x	when	largest

								else	if	(fabs(x)	>	fabs(y)	&&	fabs(x)	>	fabs(z))	{

												if(x	>	0)	{

																if(fabs(x)	>=	0.5)	{

																leftFront.Set(x	*	leftFrontPolarity	*	1.1);

																								rightFront.Set(x	*	rightFrontPolarity	*	-0.95

																							leftBack.Set(x	*	leftBackPolarity	*	-1.1);

																								rightBack.Set(x	*	rightBackPolarity);

																}

																else	if(fabs(x)	>	0.35)	{

																leftFront.Set(x	*	leftFrontPolarity	*	0.9);

																rightFront.Set(x	*	rightFrontPolarity	*-0.9);

																leftBack.Set(x	*	leftBackPolarity	*	-1.1);

																rightBack.Set(x	*	rightBackPolarity);

																}

												}

Much	like	the	top,	this	section	is	only	activated	when	the	x-component	of		stickTwo	’s
position	is	larger	than	any	of		stickOne	’s.	However,	this	section	is	different	as	our	robot
would	rotate	slightly	clockwise	and	drift	slightly	backwards.	To	address	this,	we	had	to
manually	add	multipliers	to	certain	motors	to	make	them	move	slower	or	faster	at	certain
intervals.	We	also	had	to	separate	left	strafing	and	right	strafing	because	they	behaved

FRC	Electrical	Bible

137Custom	Program	(Mecanum	Drive)

differently.	In	the	block	above,	we	only	see	the	right	strafing	portion	of	the	code.	This	section
is	subdivided	into	two	more	sections,	when	the	wheels	are	supplied	at	least	half	of	their
maximum	voltage	(>=.5)	and	when	they	are	supplied	only	a	little	bit	of	voltage	(.5	>	v	>
0.35).	This	was	due	to	our	drive	reacting	differently	at	different	voltages.	You’ll	see
multipliers	like	1.1,	-0.95	and	0.9	in	the	above	code,	this	is	because	some	wheels	were
rotating	slower	/	faster	than	others.	Multipliers	with	magnitudes	below	1	are	meant	to	slow
the	speed	of	that	specific	motor.	Multipliers	with	magnitudes	above	1	are	meant	to	speed
them	up.	Different	signs	(+	or	-)	are	meant	to	reverse	the	direction	of	the	wheel	in	order	for
the	vectors	to	make	the	card	move	in	the	desired	direction.

												else	if(x	<	0)	{

																if(fabs(x)	>=	0.5)	{

																				leftFront.Set(x	*	leftFrontPolarity	*	1.05);

																				rightFront.Set(x	*	rightFrontPolarity	*	-1);

																				leftBack.Set(x	*	leftBackPolarity	*	-1);

																				rightBack.Set(x	*	rightBackPolarity);

																}

																else	if(fabs(x)	>	0.35)	{

																				leftFront.Set(x	*	leftFrontPolarity	*	1.1);

																				rightFront.Set(x	*	rightFrontPolarity	*	-1);

																				leftBack.Set(x	*	leftBackPolarity	*	-1.1);

																				rightBack.Set(x	*	rightBackPolarity);

																}

												}

								}

This	is	the	same	as	the	portion	before	this,	but	for	strafing	to	the	left.	Since	this	motion	had
different	errors	that	strafing	to	the	right	did,	we	had	to	edit	the	multipliers	until	the	robot
strafed	nicely.

								//	z-axis	motion

								else	if	(fabs(z)	>	fabs(y)	&&	fabs(z)	>	fabs(x))	{

												leftFront.Set(z	*	leftFrontPolarity);

												rightFront.Set(z	*	rightFrontPolarity	*	-1);

												leftBack.Set(z	*	leftBackPolarity);

												rightBack.Set(z	*	rightBackPolarity	*	-1);

								}

FRC	Electrical	Bible

138Custom	Program	(Mecanum	Drive)

This	section	of	the	code	is	for	rotating	the	robot.	Again,	this	is	activated	only	when	the
magnitude	of		stickOne	’s	z-component	(how	much	to	the	left	or	right	it	is)	is	larger	than	both
the	x	and	y	components.	In	order	to	rotate,	the	right	sight	must	always	be	going	the	direction
opposite	of	where	the	joystick	tells	it	to.	This	is	why	they	have	a	-1	applied	in	their
statements.	Pushing		stickOne		to	the	right	makes	the	robot	rotate	clockwise	and	pushing	it
to	the	left	makes	it	rotate	counterclockwise.

								//turn	left	when	pressing	5

								else	if(stickOne.GetRawButton(5))	{

												leftFront.Set(0.5);

												rightFront.Set(0.3);

												leftBack.Set(0.5);

												rightBack.Set(0.3);

								}

								//turn	right	when	pressing	4

								else	if(stickOne.GetRawButton(4))	{

												leftFront.Set(-0.3);

												rightFront.Set(-0.5);

												leftBack.Set(-0.3);

												rightBack.Set(-0.5);

								}

This	section	of	the	code	is	just	a	quick	preset	that	we	found	to	be	useful.	They	make	the
robot	move	forwards	and	rotate	slightly	when	either	the	4	or	5-button	is	pressed.	Pressing
the	5-button	makes	it	turn	right	and	pushing	the	4-button	makes	it	turn	left.

								//	Otherwise	sticks	are	not	pushed

								else	{

																leftFront.Set(0);

																leftBack.Set(0);

																rightFront.Set(0);

																rightBack.Set(0);

												}

The	purpose	of	this	section	is	to	ensure	that	when	the	joysticks	are	at	their	resting	positions
or	very	near	it	that	the	motors	will	not	rotate	the	wheels.

FRC	Electrical	Bible

139Custom	Program	(Mecanum	Drive)

								x	=	0;	//	x-axis	motion-right	(+),	left	(-)

								y	=	0;	//	y-axis	motion-forward	(+),	backward	(-)

								z	=	0;	//	z-axis	motion-clockwise	(+),	counterclockwise	(-)

Since	this	portion	of	the	code	is	outside	of	the		IsOperatorControl		while	loop,	this	makes
sure	that	the	motors	will	NOT	rotate	the	wheels	when	the	robot	is	not	under	control	of	the
driver.

FRC	Electrical	Bible

140Custom	Program	(Mecanum	Drive)

8.	Sensors

8.1	The	roboRIO	accelerometer

➠	General	Overview

➠	Specifications

➠	The	Code

➠	The	Explanation

8.2	Micro	Switch

➠	Use

➠	Wiring

➠	Programming

8.3	Optical	Encoder

➠	Use

➠	Assembly

➠	Mounting

➠	Storage

➠	Wiring

➠	Programming

8.4	The	Gyro

➠	General	Overview

➠	Specifications

➠	Wiring

➠	Programming

FRC	Electrical	Bible

141Sensors

roboRIO	Accelerometer

➠	General	Overview

One	of	the	many	features	that	comes	with	the	RoboRIO	is	the	built-in	3-axis	accelerometer,
which	has	the	potential	to	replace	the	ADXL345	accelerometer	that	also	comes	in	the	2015
Kit	of	Parts.	The	purpose	of	this	device	is	to	determine	the	proper	acceleration	of	an	object,
which	is	its	acceleration	relative	to	freefall.	This	can	be	used	to	determine	how	much	the
robot	is	tilted	or	a	way	to	monitor	motion.

➠	Specifications
Axes:	3	(x,	y,	and	z)
Sample	Rate:	800	Samples	per	second
Resolution:	12	bits
Range:	±8g	(gravity)
Noise:	3.9	mgms	typical	at	25°	C

FRC	Electrical	Bible

142roboRIO	Accelerometer

➠	The	Code
This	is	the	code	we	used	to	determine	the	direction	of	each	axis	as	well	as	the	stability	of	the
returned	values.

#include	"WPILib.h"

class	Robot:	public	SampleRobot	{

				BuiltInAccelerometer	accelerometer;

				const	double	kUpdatePeriod	=	0.005;	//	5milliseconds	/	0.005	seconds.

public:

				//sets	the	range	of	the	accelerometer	to	be	+	or	-	8G	(units	of	gravity)

				Robot()	:	accelerometer(Accelerometer::Range::kRange_8G)	{

				}

				void	OperatorControl()	{

								double	xAcceleration;				//acceleration	on	the	x-axis

								double	yAcceleration;				//acceleration	on	the	y-axis				

								double	zAcceleration;				//acceleration	on	the	z-axis

								double	previousX	=	0;				//Previous	recursive	average	on	x-axis

								double	previousY	=	0;				//Previous	recursive	average	on	y-axis

								double	previousZ	=	1;				//Previous	recursive	average	on	z-axis

								while	(IsOperatorControl()	&&	IsEnabled())	{

												xAcceleration	=	accelerometer.GetX();	//returns	x-axis	accel

												yAcceleration	=	accelerometer.GetY();	//returns	y-axis	accel

												zAcceleration	=	accelerometer.GetZ();	//returns	z-axis	accel

												SmartDashboard::PutNumber("X-Axis	G:",	xAcceleration);

												SmartDashboard::PutNumber("Y-Axis	G:",	yAcceleration);

												SmartDashboard::PutNumber("Z-Axis	G:",	zAcceleration);

												SmartDashboard::PutNumber("Recrusive	X-Axis	Average:",	((xAcceleration*0.1)	+	(0.9*previousX)));

												//returns	a	recursive	average	for	the	x-axis

												SmartDashboard::PutNumber(“Recursive	Y-Axis	Average:",	((yAcceleration*0.1)	+	(0.9*previousY)));

												//returns	a	recursive	average	for	the	y-axis

												SmartDashboard::PutNumber(“Recursive	Z-Axis	Average:”,	((zAcceleration*0.1)	+	(0.9*previousZ)));

												//returns	a	recursive	average	for	the	z-axis

FRC	Electrical	Bible

143roboRIO	Accelerometer

												previousX	=	(xAcceleration*0.1)	+	(0.9*previousX);

												previousY	=	(yAcceleration*0.1)	+	(0.9*previousY);

												previousZ	=	(zAcceleration*0.1)	+	(0.9*previousZ);

												Wait(kUpdatePeriod);	//	Wait	a	short	bit	before	updating	again

								}

				}

};

START_ROBOT_CLASS(Robot);

➠	The	Explanation

BuiltInAccelerometer	accelerometer;

Declare	the	RoboRIO	accelerometer	as	BuiltInAccelerometer;	declared	between		public
SampleRobot		and		public	:	RobotDemo	

public:

				//sets	the	range	of	the	accelerometer	to	be	+	or	-	8G	(units	of	gravity)

				Robot()	:	accelerometer(Accelerometer::Range::kRange_8G)	{

				}

Initializes	the	roboRIO	accelerometer	with	a	range	of	+/-	8Gs,	which	is	the	acceleration	in
units	of	gravity	(9.81m/s).	This	is	the	maximum	range	that	the	device	is	capable	of.	There	is
no	need	to	input	pwm	ports	as	the	accelerometer	is	built	in.

void	OperatorControl()	{

								double	xAcceleration;				//acceleration	on	the	x-axis

								double	yAcceleration;				//acceleration	on	the	y-axis				

								double	zAcceleration;				//acceleration	on	the	z-axis

								double	previousX	=	0;				//Previous	recursive	average	on	x-axis

								double	previousY	=	0;				//Previous	recursive	average	on	y-axis

								double	previousZ	=	1;				//Previous	recursive	average	on	z-axis

FRC	Electrical	Bible

144roboRIO	Accelerometer

In	this	section	we	initialize	the	variables	that	we	will	be	using	for	output	on	the
SmartDashboard.	Since	the	accelerometer	has	3	axes,	we	need	a	variable	for	each	one	(x,
y,	and	z).	The	previous	axis	variables	are	used	to	determine	a	recursive	average	that	is
explained	later	in	this	document.	They	are	meant	to	store	the	value	of	the	recursive	average
of	all	previously	returned	values.		previousX		and		previousY		are	equal	to	0	because	that	is
the	expected	value	when	the	roboRIO	is	at	rest	and	on	a	perfectly	horizontal	surface.
	previousZ		is	equal	to	1	because	the	roboRIO	is	not	in	freefall,	which	is	what	an
accelerometer	measures	acceleration	in	reference	to.

				while	(IsOperatorControl()	&&	IsEnabled())	{

								xAcceleration	=	accelerometer.GetX();	//returns	x-axis	accel

								yAcceleration	=	accelerometer.GetY();	//returns	y-axis	accel

								zAcceleration	=	accelerometer.GetZ();	//returns	z-axis	accel

								SmartDashboard::PutNumber("X-Axis	G:",	xAcceleration);

								SmartDashboard::PutNumber("Y-Axis	G:",	yAcceleration);

								SmartDashboard::PutNumber("Z-Axis	G:",	zAcceleration);

Here,	the	variables		xAcceleration	,		yAcceleration	,	and		zAcceleration		are	being	set	to	the
current	values	of	the	accelerometer	pertaining	to	the	x,	y,	and	z	axis.	After	updating	these
values,	they	are	then	sent	to	the	SmartDashboard	to	be	read	in	the	form	of	a	running	value
or	a	table.

												SmartDashboard::PutNumber("Recrusive	X-Axis	Average:",	((xAcceleration*0.1)	+	(0.9*previousX)));

												//returns	a	recursive	average	for	the	x-axis

												SmartDashboard::PutNumber(“Recursive	Y-Axis	Average:",	((yAcceleration*0.1)	+	(0.9*previousY)));

												//returns	a	recursive	average	for	the	y-axis

												SmartDashboard::PutNumber(“Recursive	Z-Axis	Average:”,	((zAcceleration*0.1)	+	(0.9*previousZ)));

												//returns	a	recursive	average	for	the	z-axis

												previousX	=	(xAcceleration*0.1)	+	(0.9*previousX);

												previousY	=	(yAcceleration*0.1)	+	(0.9*previousY);

												previousZ	=	(zAcceleration*0.1)	+	(0.9*previousZ);

												Wait(kUpdatePeriod);	//	Wait	a	short	bit	before	updating	again

								}

				}

};

START_ROBOT_CLASS(Robot);

FRC	Electrical	Bible

145roboRIO	Accelerometer

Here	we	calculate	the	recursive	average	for	each	axis	which	can	be	useful	during	testing.
The	purpose	of	having	this	recursive	average	is	to	effectively	reduce	the	sensitivity	of	the
returned	values	to	fluctuations.	This	allows	you	to	get	a	more	accurate	and	stable	reading	for
each	axis	of	the	accelerometer,	and	could	be	used	to	test	for	varying	angles	that	the
accelerometer	is	tilted.

This	simple	recursive	average	algorithm	is	done	by	taking	.1	of	the	current	value	for	an	axis
and	adding	it	to	.9	of	the	previous	average.	This	essentially	means	that	we	have	a	constantly
changing	average.	Note	that	the	sensitivity	of	this	algorithm	can	be	adjusted	by	changing	the
“0.1”	and	“0.9”	values.	However,	remember	that	the	two	multipliers	must	add	to	a	value	of	1,
because	the	average	will	tend	to	continue	increasing	or	decreasing	depending	on	how	the
multipliers	are	adjusted.	If	you	have	a	multipliers	of	.01	and	.99,	the	current	average	will	be
much	less	sensitive	to	change	as	the	weight	of	each	new	number	is	drastically	decreased.

FRC	Electrical	Bible

146roboRIO	Accelerometer

Microswitch

➠	Use

The	microswitch	is	usually	used	to	keep	something	from	overextending	or	surpassing	some
distance.	When	the	switch	not	pushed,	the	switch	is	NC	(normally	closed),	returning	1.	When
the	switch	pushed,	the	switch	is	NO	(Normally	Open),	returning	0.

➠	Wiring

FRC	Electrical	Bible

147Microswitch

	

The	switch	is	plugged	into	the	Digital	IO	section	of	the	roboRIO	via	a	PWM	cable.

➠	Programming

Declared	and	instantiated	as	a		DigitalInput	

When	switch	NC,	returns	0
When	switch	NO,	returns	1

Declaration:		DigitalInput	switch;	

Instantiation:		switch	(1)	//port	number	in	the	digital	sidecar	

FRC	Electrical	Bible

148Microswitch

Using	Microswitch:		switch.Get();	//returns	either	0	or	1	

//	A	Barebones	Code

#include	"WPILib.h"

//	Last	modified:	February	7,	2014	by:	Vivian

class	RobotDemo	:	public	SampleRobot	{

				DigitalInput	limitSwitch;

public:

				RobotDemo(void):

								limitSwitch(1)	{

				}

				void	Autonomous(void)	{

				}

				void	OperatorControl(void)	{

								while	(IsOperatorControl())

								{

												if(limitSwitch.Get()	==	1)	{

																//	you	can	do	things	here	if	the	switch	is	pressed

												}

								}

				}

				void	Test()	{

								while(IsTest())	{

								}

				}

};

START_ROBOT_CLASS(RobotDemo);

FRC	Electrical	Bible

149Microswitch

Optical	Encoder

➠	Use
The	optical	encoder	is	the	most	common	type	of	encoder	in	FRC	that	uses	one	or	more
LEDs	pointed	at	a	strip	or	slit	code	wheel	and	two	detectors	90	degrees	apart	to	measure
the	rotation	speed	of	a	wheel	or	other	shafts.	The	encoder	pictured	to	the	left	is	a	US	Digital
E4P	(am-0174)	optical	encoder.

Specs

Max	RPM:	10,000	RPM
100-360	cycles	per	revolution
400-1440	pulses	per	revolution
Minimum	shaft	length:	.375”	(⅜)
Shaft	Diameter:	.079”	to	.250”
Weight:	.018	lbs

➠	Assembly

1.	 Place	base	over	shaft.	Secure	base	to	mounting	surface	using	either	the	two	screws	on
the	base	or	a	mounting	pad.

FRC	Electrical	Bible

150Optical	Encoder

Mounting	the	base	without	a	mount	pad

Mounting	pad	placed	under	the	base	if	used.

2.	 Place	hub	disk	assembly	onto	shaft	with	pattern-side	down	towards	base.	It	should	not
be	completely	pressed	down.

3.	 Use	the	spacer	(lip	facing	downwards)	to	push	the	hub	disk	assembly	to	the	appropriate
location	on	the	shaft.	The	disk	should	not	be	touching	anything	besides	the	shaft	and
the	spacer,	and	there	should	be	a	considerable	gap	between	the	disk	and	the	base.

FRC	Electrical	Bible

151Optical	Encoder

4.	 Remove	the	spacer	while	ensuring	that	the	disk	stays	in	place.

5.	 Place	the	housing	on	top	of	the	encoder.	Using	your	thumb	and	finger,	squeeze	ears
together	to	ensure	that	the	cover	fully	latches.

➠	Mounting
It	is	easiest	if	the	optical	encoder	is	placed	on	the	output	shaft	as	there	is	a	direct	correlation
between	the	rotation	of	the	shaft	and	the	movement	of	whatever	it	controls.	Also	ensure	that
the	optical	encoder	is	perfectly	centered	around	the	shaft.

➠	Storage
The	optical	encoder	can	get	scratched	easily	so	it	should	be	stored	in	a	special	case	to
prevent	scratching	or	in	a	place	that	will	not	scratch	the	surface	of	the	disk.

FRC	Electrical	Bible

152Optical	Encoder

➠	Wiring

The	wiring	for	the	optical	encoder	uses	two	channels	(Digital	IO;	A/B)	for	the	PDP	so	four
wires	have	to	be	soldered	to	two	PWMs.

Orange:	Power------------------------------->	PWM	2	Power

Blue:	Channel	A------------------------------>	PWM	1	Signal

Brown:	Ground------------------------------->	PWM	2	Ground

Yellow:	Channel	B---------------------------->	PWM	2	Signal

➠	Programming

//Code	Used	for	Testing	with	roboRIO

#include	"WPILib.h"

FRC	Electrical	Bible

153Optical	Encoder

/**

	*	Encoder	Test	Using	Motor

	*/

class	Robot	:	public	SampleRobot	{

				Encoder	encoder;

				Joystick	logitech;

				Talon	talon;

				//	update	every	0.005	seconds/5	milliseconds.

				double	kUpdatePeriod	=	0.005;

public:

				Robot()	:

												encoder(1,	2,	false,	Encoder::k4X),

												logitech(0),	//	Initialize	logitech	on	port	0.

												talon(0)	//	Initialize	the	Talon	on	channel	0.

				{

								encoder.SetSamplesToAverage(5);	//	Used	to	reduce	noise	in	period

								encoder.SetDistancePerPulse(1.0/360);	//	This	makes	it	so	that	GetDistance	will	return	1	when	the	shaft	

								//	makes	a	full	rotation	and	that	GetRate	will	be	in	Revs	per	second

				}

				void	OperatorControl()	{

								encoder.Reset();

								while	(IsOperatorControl()	&&	IsEnabled())	{

												talon.Set(logitech.GetY());	

												//gets	the	y-axis	on	the	LEFT	logitech

												while(encoder.GetDistance()	<	2)	{

																talon.Set(-0.2);

																SmartDashboard::PutNumber("Encoder	Distance",	encoder.GetDistance());	

																//	prints	displacement	in	revolutions

																SmartDashboard::PutNumber("Encoder	Rate",	encoder.GetRate());	

																//	prints	rate	in	Revs	per	second	

																Wait(kUpdatePeriod);

												}

								}

				}

};

START_ROBOT_CLASS(Robot);

FRC	Electrical	Bible

154Optical	Encoder

FRC	Electrical	Bible

155Optical	Encoder

Gyro

➠	General	Overview
The	gyro	measures	angular	changes	on	the	top	surface	axis.	The	voltage	output	depends	on
the	angular	change	it	detects.	It	can	also	measure	the	rate	of	angular	change.	It	normally
would	be	used	in	tandem	with	the	accelerometer,	since	the	accelerometer	can	detect
absolute	angle	vs	angular	motion.	The	gyro	best	functions	at	the	center	of	the	robot’s	axis	of
rotation.	When	mounting	it,	keep	the	gyro	away	from	anything	that	might	fry	the	gyro,	so	it	is
best	to	electronically	isolate	it	from	the	main	mounting	board.	Noteworthy	is	that	it	also
contains	a	temperature	sensor,	useful	for	detecting	heat	within	the	robot	system	during
operation	if	a	thermal	detector	is	not	available	or	during	a	match.

➠	Specifications
The	gyro	accepts	a	+5V	for	power,	can	record	up	to	250	O/s,	has	a	nominal	output	of	2.5V	at
standstill,	adds	7mV/O/s.	Board	carries	a	filter	set	to	400	Hz.	Contains	integrated
temperature	sensor	which	accepts	a	+5V	for	power	with	nominal	output	at	2.5V	at	25OC,
adds	9mV/OC.

➠	Wiring

FRC	Electrical	Bible

156Gyro

Wires	to	the	roboRIO	Analog	IN	ports	using	a	female-to-female	PWM.	Ground,	Power,
Signal	from	outside	in	respectively.

Wires	to	the	Gyro	sensor	with	the	other	end	of	the	female-to-female	PWM.	Ground,	Power,
Signal	from	outside	in	respectively.

➠	Programming

FRC	Electrical	Bible

157Gyro

#include	"WPILib.h"

class	Robot:	public	SampleRobot

{

				Joystick	stick;	//	only	joystick

				Gyro	gyro;	//	Gyro	sensor

				double	angleTurn	=	0.0;

				double	angleRate	=	0.0;

				double	driftRate	=	0.0;

public:

				Robot()	:

												stick(0),		//	these	must	be	initialized	in	the	same	order

												gyro(0)				//	as	they	are	declared	above.

				{

								gyro.InitGyro();

				}

				void	OperatorControl()	{

								gyro.Reset();

								while	(IsOperatorControl()	&&	IsEnabled())	{

												if(stick.GetRawButton(2))	{

																gyro.Reset();

																Wait(2);

																driftRate	=	gyro.GetAngle();

																SmartDashboard::PutNumber("drift	rate",	driftRate);

												}

												angleTurn	=	gyro.GetAngle();

												angleRate	=	gyro.GetRate();

												SmartDashboard::PutNumber("Gyro	angle",	angleTurn);

												SmartDashboard::PutNumber("Rate	of	turning",	angleRate);

												Wait(0.05);

								}

				}

};

START_ROBOT_CLASS(Robot);

FRC	Electrical	Bible

158Gyro

The	D-Link

FRC	Electrical	Bible

159Camera

The	D-Link

FRC	Electrical	Bible

160LiveFeed

The	D-Link

FRC	Electrical	Bible

161Pneumatics

The	D-Link

FRC	Electrical	Bible

162Appendixes

Changelog
January	10,	2016,	modified	by	Vivian

Updated	PDP	chapter
Added	Sensors	chapter
Made	formatting	changes	to	Drive	Code	chapter
Added	Manual	Configuration	to	D-Link	section

February	23,	2015,	modified	by	Vivian

Added	Drive	Code
Fixed	Table	of	Contents

February	5,	2015,	modified	by	Vivian

Added	Driver	Station	Documentation
Added	Motor	Controller	Documentation

February	2,	2015,	modified	by	Kayli	and	Alex

Added	PDP	Documentation
Added	D-Link	Documentation

FRC	Electrical	Bible

163Changelog

	Introduction
	The roboRIO
	General roboRIO Overview
	Configuring the roboRIO
	Connecting to the roboRIO Wirelessly
	Uploading Code to the roboRIO
	The CAN Bus
	The Robot Signal Light

	The Power Distribution Board (PDP)
	The PDP
	120A Circuit Breaker
	The Voltage Regulator Module
	The Power Converter

	The D-Link
	The Physical Layer
	Automatic Configuration
	Manual Configuration
	Troubleshooting the D-Link

	Driver Station
	Introduction
	The Interface
	Printing to Driver Station

	A Crash Course on C++
	Variables
	Functions
	Object Usage
	The Joystick

	Motor Controllers
	General Overview
	Motors
	Jaguar
	Victor 888
	Talon
	Talon SRX
	Spike
	Fans

	Drive Code
	Box on Wheels
	Box on Wheels Template vs Custom Program
	Custom Program (Tank Drive)
	Custom Program (Mecanum Drive)

	Sensors
	roboRIO Accelerometer
	Microswitch
	Optical Encoder
	Gyro

	Camera
	LiveFeed
	Pneumatics
	Appendixes
	Changelog

